
Nguyen, P.-M., Guiga, W., Vitrac, O., 2017b. Molecular thermodynamics for food science and engineering. Food Res. Int. 88 (Part A), 91–104. https://doi.org/10.1016/
j.foodres.2016.03.014.
NIST NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/.
Nriagu, J.O., 1983. Lead and Lead Poisoning in Antiquity. John Wiley, New York, USA, p. 437.
Özal, T.A., Peter, C., Hess, B., van der Vegt, N.F.A., 2008. Modeling solubilities of additives in polymer microstructures: single-step perturbation method based on a soft-cavity
reference state. Macromolecules 41 (13), 5055–5061. https://doi.org/10.1021/ma702329q.
Patterson, C.C., Shirahata, H., Ericson, J.E., 1987. Lead in ancient human bones and its relevance to historical developments of social problems with lead. Sci. Total Environ. 61,
167–200. https://doi.org/10.1016/0048-9697(87)90366-4.
Pigeonneau, F., Jaffrennou, B., Letailleur, A., Limouzin, K., 2016. Numerical investigation of generalized Graetz problem in circular tube with a mass transfer coupling between the
solid and the liquid. Int. J. Heat Mass Transf. 96, 381–395. https://doi.org/10.1016/j.ijheatmasst ransfer.2016.01.040.
Piringer, O.G., Baner, A.L., 2000. Plastic Packaging Materials for Food: Barrier Function, Mass Transport, Quality Assurance, and Legislation. Wiley-VCH Verlag, Weinheim,
Germany, p. 576.
Piringer, O.G., Baner, A.L., 2008. Plastic Packaging Interactions with Food and Pharmaceuticals. Wiley-VCH Verlag, Weinheim, Germany, p. 614.
Poças, M.F., Oliveira, J.C., Oliveira, F.A.R., Hogg, T., 2008. A critical survey of predictive mathematical models for migration from packaging. Crit. Rev. Food Sci. Nutr. 48 (10),
913–928. https://doi.org/10.1080/10408390701761944.
Rall, D.P., 1972. The invisible pollution. N. Engl. J. Med. 287 (22), 1146–1147. https://doi.org/10.1056/NEJM197211302872213.
Roberts, H.R., 1976. Food additives - a study in the evolution of safety. Food Drug Cosmet. Law J. 31, 404.
Robertson, G.L., 2016. Food Packaging: Principles and Practice, third ed. CRC Press, Boca-Raton, USA, p. 686.
Roe, R.-J., Bair, H.E., Gieniewski, C., 1974. Solubility and diffusion coefficient of antioxidants in polyethylene. J. Appl. Polym. Sci. 18 (3), 843–856. https://doi.org/10.1002/
app.1974.070180319.
Sagiv, A., 2001. Exact solution of mass diffusion into a finite volume. J. Membr. Sci. 186 (2), 231–237. https://doi.org/10.1016/S0376-7388(00)00678-5.
Sagiv, A., 2002. Theoretical formulation of the diffusion through a slabdtheory validation. J. Membr. Sci. 199 (1), 125–134. https://doi.org/10.1016/S0376-7388(01)00685-8.
Salafranca, J., Clemente, I., Isella, F., Nerín, C., Bosetti, O., 2015. Influence of oxygen and long term storage on the profile of volatile compounds released from polymeric multilayer
food contact materials sterilized by gamma irradiation. Anal. Chim. Acta 878, 118–130. https://doi.org/10.1016/j.aca.2015.03.055.
Schwope, A.D., Till, D.E., Ehntholt, D.J., Sidman, K.R., Whelan, R.H., Schwartz, P.S., Reid, R.C., 1987a. Migration of BHT and Irganox 1010 from low-density polyethylene (LDPE) to
foods and food-simulating liquids. Food Chem. Toxicol. 25 (4), 317–326. https://doi.org/10.1016/0278-6915(87)90129-3.
Schwope, A.D., Till, D.E., Ehntholt, D.J., Sidman, K.R., Whelan, R.H., Schwartz, P.S., Reid, R.C., 1987b. Migration of Irganox 1010 from ethylene-vinyl acetate films to foods and
food-simulating liquids. Food Chem. Toxicol. 25 (4), 327–330. https://doi.org/10.1016/0278-6915(87)90130-X.
Schwope, A.D., Goydan, R., Reid, R., 1990. Methodology for Estimating the Migration of Additives and Impurities from Polymeric Materials - EPA 560/5-85-015. Office of Pesticides
and Toxic Substances, U.S. Environmental Protection Agency (EPA), Washington DC, USA -, p. 148. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey
¼P100BCMB.TXT.
Singh, P., Wani, A.A., Langowski, H.C., 2017. Food Packaging Materials: Testing & Quality Assurance. CRC Press, Boca-Raton, USA, p. 344.
Six, T., Feigenbaum, A., 2003. Mechanism of migration from agglomerated cork stoppers. Part 2: safety assessment criteria of agglomerated cork stoppers for champagne wine
cork producers, for users and for control laboratories. Food Addit. Contam. 20 (10), 960–971. https://doi.org/10.1080/02652030310001597583.
Six, T., Feigenbaum, A., Riquet, A.M., 2002. Mechanism of migration from agglomerated cork stoppers: I. An electron spin resonance investigation. J. Appl. Polym. Sci. 83 (12),
2644–2654. https://doi.org/10.1002/app.10230.
Spack, L.W., Leszczyk, G., Varela, J., Simian, H., Gude, T., Stadler, R.H., 2017. Understanding the contamination of food with mineral oil: the need for a confirmatory analytical and
procedural approach. Food Addit. Contam. Part A 34 (6), 1052–1071. https://doi.org/10.1080/19440049.2017.1306655.
Stadler, R.H., Mottier, P., Guy, P., Gremaud, E., Varga, N., Lalljie, S., Whitaker, R., Kintscher, J., Dudler, V., Read, W.A., Castle, L., 2004. Semicarbazide is a minor thermal
decomposition product of azodicarbonamide used in the gaskets of certain food jars. Analyst 129 (3), 276–281. https://doi.org/10.1039/B314206J.
Stastna, J., De Kee, D., 1995. Transport Properties in Polymers. CRC Press, Boca-Raton, USA, p. 303.
Szendi, K., Gyöngyi, Z., Kontár, Z., Gerencsér, G., Berényi, K., Hanzel, A., Fekete, J., Kovács, A., Varga, C., 2018. Mutagenicity and phthalate level of bottled water under different
storage conditions. Expo. Health 10 (1), 51–60. https://doi.org/10.1007/s12403-017-0246-x.
Till, D.E., Ehntholt, D.J., Reid, R.C., Schwartz, P.S., Schwope, A.D., Sidman, K.R., Whelan, R.H., 1982a. Migration of styrene monomer from crystal polystyrene to foods and food
simulating liquids. Ind. Eng. Chem. Fundam. 21 (2), 161–168. https://doi.org/10.1021/i100006a010.
Till, D.E., Ehntholt, D.J., Reid, R.C., Schwartz, P.S., Sidman, K.R., Schwope, A.D., Whelan, R.H., 1982b. Migration of BHT antioxidant from high density polyethylene to foods and
food simulants. Ind. Eng. Chem. Prod. Res. Dev. 21 (1), 106–113. https://doi.org/10.1021/i300005a023.
Till, D., Schwope, A.D., Ehntholt, D.J., Sidman, K.R., Whelan, R.H., Schwartz, P.S., Reid, R.C., Rainey, M.L., 1987. Indirect food additive migration from polymeric food packaging
materials. CRC Crit. Rev. Toxicol. 18 (3), 215–243. https://doi.org/10.3109/10408448709089862.
Tribble, A., 2000. Fundamentals of Contamination Control. SPIE Press, Washington, DC, USA, p. 174.
Vagias, A., Schultze, J., Doroshenko, M., Koynov, K., Butt, H.-J., Gauthier, M., Fytas, G., Vlassopoulos, D., 2015. Molecular tracer diffusion in nondilute polymer solutions: universal
master curve and glass transition effects. Macromolecules 48 (24), 8907–8912. https://doi.org/10.1021/acs.macromol.5b01464.
Vergnaud, J.M., 1991. Liquid Transport Processes in Polymeric Materials: Modeling and Industrial Applications. Prentice Hall International Ltd, London, UK, p. 362.
Vergnaud, J.M., Rosca, I.D., 2006. Assessing Food Safety of Polymer Packaging. Rapra Technology, Shawbury, UK, p. 273.
Vieth, W.R., 1991. Diffusion in and through Polymers: Principles and Applications. Carl Hanser GmbH, Munich, Germany, p. 330.
Vitrac, O., Gillet, G., 2010. An off-lattice flory-huggins approach of the partitioning of bulky solutes between polymers and interacting liquids. Int. J. Chem. React. Eng. 8.
Vitrac, O., Hayert, M., 2005. Risk assessment of migration from packaging materials into foodstuffs. AICHE J. 51 (4), 1080–1095. https://doi.org/10.1002/aic.10462.
Vitrac, O., Hayert, M., 2006. Identification of diffusion transport properties from desorption/sorption Kinetics: an analysis based on a new approximation of fick equation during
SolidLiquid contact. Ind. Eng. Chem. Res. 45 (23), 7941–7956. https://doi.org/10.1021/ie060347w.
Vitrac, O., Hayert, M., 2007. Effect of the distribution of sorption sites on transport diffusivities: a contribution to the transport of medium-weight-molecules in polymeric materials.
Chem. Eng. Sci. 62 (9), 2503–2521. https://doi.org/10.1016/j.ces.2007.01.073.
Vitrac, O., Leblanc, J.-C., 2007. Consumer exposure to substances in plastic packaging. I. Assessment of the contribution of styrene from yogurt pots. Food Addit. Contam. 24 (2)
https://doi.org/10.1080/02652030600888618
.
Vitrac, O., Lézervant, J., Feigenbaum, A., 2006. Decision trees as applied to the robust estimation of diffusion coefficients in polyole fi ns. J. Appl. Polym. Sci. 101 (4), 2167–2186.
https://doi.org/10.1002/app.23112.
Vitrac, O., Challe, B., Leblanc, J.C., Feigenbaum, A., 2007a. Contamination of packaged food by substances migrating from a direct-contact plastic layer: assessment using
a generic quantitative household scale methodology. Food Addit. Contam. 24 (1), 75–94. https://doi.org/10.1080/02652030600888550.
Vitrac, O., Hayert, M., 2007b. Design of safe packaging materials under uncertainty. In: Berton, L.P. (Ed.), Chemical Engineering Research Trends. Nova Science Publishers, New
York, USA, pp. 251–292.
Vitrac, O., Mougharbel, A., Feigenbaum, A., 2007c. Interfacial mass transport properties which control the migration of packaging constituents into foodstuffs. J. Food Eng. 79 (3),
1048–1064. https://doi.org/10.1016/j.jfoodeng.2006.03.030.
Vitrac, O. An atomistic Flory-Huggins formulation for the tailored prediction of activity and partition coefficients. https://mediaspace.msu.edu/media/Dr.þOlivierþVitracþ
presentsAþAnþatomisticþFlory-Hugginsþformulationþforþtheþtailoredþpredictionþofþactivityþandþpartitionþcoefficients/1_uzi6h91k.
Risk Assessment of Migration From Packaging Materials Into Food 55