Module dump3
dump
Class
The dump
class provides comprehensive tools for reading, writing, and manipulating LAMMPS dump files and particle attributes. It handles both static and dynamic properties of snapshots with robust methods for data selection, transformation, and visualization.
Features
- Input Handling:
- Supports single or multiple dump files, including gzipped files.
- Wildcard expansion for multiple files.
-
Automatically removes incomplete and duplicate snapshots.
-
Snapshot Management:
- Read snapshots one at a time or all at once.
- Assign self-describing column names.
-
Automatically unscale coordinates if stored as scaled.
-
Selection:
- Timesteps: Select specific timesteps, skip intervals, or test conditions.
-
Atoms: Select atoms using Boolean expressions based on attributes.
-
Output:
- Write selected steps and atoms to a single or multiple dump files.
-
Options to append data or include/exclude headers.
-
Transformations:
- Scale or unscale coordinates.
- Wrap/unwrap coordinates into periodic boxes.
-
Sort atoms or timesteps by IDs or attributes.
-
Analysis:
- Compute min/max values for attributes.
-
Define new columns with computed values or custom vectors.
-
Visualization:
- Extract atom, bond, and geometry data for external visualization tools.
Usage
Initialization
d = dump("dump.one") # Read one or more dump files
d = dump("dump.1 dump.2.gz") # Gzipped files are supported
d = dump("dump.*") # Use wildcard for multiple files
d = dump("dump.*", 0) # Store filenames without reading
Snapshot Management
- Read Next Snapshot:
python time = d.next() # Read next snapshot
Returns: - Timestamp of the snapshot read.
-
-1
if no snapshots remain or the last snapshot is incomplete. -
Assign Column Names:
python d.map(1, "id", 3, "x") # Assign names to columns (1-N)
Selection Methods
Timesteps
- Select all or specific timesteps:
python d.tselect.all() # Select all timesteps d.tselect.one(N) # Select only timestep N d.tselect.skip(M) # Select every Mth step d.tselect.test("$t >= 100") # Select timesteps matching condition
Atoms
- Select atoms across timesteps:
python d.aselect.all() # Select all atoms in all steps d.aselect.test("$id > 100") # Select atoms based on conditions
Output
- Write to Files:
python d.write("file") # Write selected steps/atoms d.write("file", head=0, app=1) # Append to file without headers d.scatter("tmp") # Scatter to multiple files
Transformations
-
Coordinate Operations:
python d.scale() # Scale coordinates to 0-1 d.unscale() # Unscale to box size d.wrap() # Wrap coordinates into periodic box d.unwrap() # Unwrap coordinates out of the box
-
Sorting:
python d.sort() # Sort by atom ID d.sort("x") # Sort by x-coordinate
Analysis
-
Min/Max Values:
python min_val, max_val = d.minmax("type")
-
Define New Columns:
python d.set("$ke = $vx * $vx + $vy * $vy") # Set a column using expressions d.setv("type", vector) # Assign values from a vector
Visualization
- Extract visualization-ready data:
python time, box, atoms, bonds, tris, lines = d.viz(index)
Properties
atype
: Name of vector used as atom type for visualization (default:"type"
).type
: Hash of column names, identifying the dump type.
Examples
Basic Usage
d = dump("dump.one")
d.tselect.all() # Select all timesteps
d.aselect.test("$id > 100") # Select atoms with ID > 100
d.write("output.dump") # Write selected data
Coordinate Transformations
d.scale() # Scale coordinates
d.unwrap() # Unwrap coordinates
d.wrap() # Re-wrap into periodic box
Visualization
time, box, atoms, bonds, tris, lines = d.viz(0)
Notes
- Scaling: Automatically unscales coordinates if snapshots are stored as scaled.
- Error Handling: Snapshots with duplicate timestamps are automatically culled.
- Performance: For large dump files, use incremental reading (
next()
).
Expand source code
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
# `dump` Class
The `dump` class provides comprehensive tools for reading, writing, and manipulating LAMMPS dump files and particle attributes. It handles both static and dynamic properties of snapshots with robust methods for data selection, transformation, and visualization.
---
## Features
- **Input Handling**:
- Supports single or multiple dump files, including gzipped files.
- Wildcard expansion for multiple files.
- Automatically removes incomplete and duplicate snapshots.
- **Snapshot Management**:
- Read snapshots one at a time or all at once.
- Assign self-describing column names.
- Automatically unscale coordinates if stored as scaled.
- **Selection**:
- Timesteps: Select specific timesteps, skip intervals, or test conditions.
- Atoms: Select atoms using Boolean expressions based on attributes.
- **Output**:
- Write selected steps and atoms to a single or multiple dump files.
- Options to append data or include/exclude headers.
- **Transformations**:
- Scale or unscale coordinates.
- Wrap/unwrap coordinates into periodic boxes.
- Sort atoms or timesteps by IDs or attributes.
- **Analysis**:
- Compute min/max values for attributes.
- Define new columns with computed values or custom vectors.
- **Visualization**:
- Extract atom, bond, and geometry data for external visualization tools.
---
## Usage
### Initialization
```python
d = dump("dump.one") # Read one or more dump files
d = dump("dump.1 dump.2.gz") # Gzipped files are supported
d = dump("dump.*") # Use wildcard for multiple files
d = dump("dump.*", 0) # Store filenames without reading
```
### Snapshot Management
- **Read Next Snapshot**:
```python
time = d.next() # Read next snapshot
```
Returns:
- Timestamp of the snapshot read.
- `-1` if no snapshots remain or the last snapshot is incomplete.
- **Assign Column Names**:
```python
d.map(1, "id", 3, "x") # Assign names to columns (1-N)
```
### Selection Methods
#### Timesteps
- Select all or specific timesteps:
```python
d.tselect.all() # Select all timesteps
d.tselect.one(N) # Select only timestep N
d.tselect.skip(M) # Select every Mth step
d.tselect.test("$t >= 100") # Select timesteps matching condition
```
#### Atoms
- Select atoms across timesteps:
```python
d.aselect.all() # Select all atoms in all steps
d.aselect.test("$id > 100") # Select atoms based on conditions
```
### Output
- **Write to Files**:
```python
d.write("file") # Write selected steps/atoms
d.write("file", head=0, app=1) # Append to file without headers
d.scatter("tmp") # Scatter to multiple files
```
### Transformations
- **Coordinate Operations**:
```python
d.scale() # Scale coordinates to 0-1
d.unscale() # Unscale to box size
d.wrap() # Wrap coordinates into periodic box
d.unwrap() # Unwrap coordinates out of the box
```
- **Sorting**:
```python
d.sort() # Sort by atom ID
d.sort("x") # Sort by x-coordinate
```
### Analysis
- **Min/Max Values**:
```python
min_val, max_val = d.minmax("type")
```
- **Define New Columns**:
```python
d.set("$ke = $vx * $vx + $vy * $vy") # Set a column using expressions
d.setv("type", vector) # Assign values from a vector
```
### Visualization
- Extract visualization-ready data:
```python
time, box, atoms, bonds, tris, lines = d.viz(index)
```
---
## Properties
- `atype`: Name of vector used as atom type for visualization (default: `"type"`).
- `type`: Hash of column names, identifying the dump type.
---
## Examples
### Basic Usage
```python
d = dump("dump.one")
d.tselect.all() # Select all timesteps
d.aselect.test("$id > 100") # Select atoms with ID > 100
d.write("output.dump") # Write selected data
```
### Coordinate Transformations
```python
d.scale() # Scale coordinates
d.unwrap() # Unwrap coordinates
d.wrap() # Re-wrap into periodic box
```
### Visualization
```python
time, box, atoms, bonds, tris, lines = d.viz(0)
```
---
## Notes
- **Scaling**: Automatically unscales coordinates if snapshots are stored as scaled.
- **Error Handling**: Snapshots with duplicate timestamps are automatically culled.
- **Performance**: For large dump files, use incremental reading (`next()`).
---
"""
__project__ = "Pizza3"
__author__ = "Olivier Vitrac"
__copyright__ = "Copyright 2022"
__credits__ = ["Steve Plimpton", "Olivier Vitrac"]
__license__ = "GPLv3"
__maintainer__ = "Olivier Vitrac"
__email__ = "olivier.vitrac@agroparistech.fr"
__version__ = "0.99991"
# Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
# Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
#
# Copyright (2005) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the GNU General Public License.
#
# ==== Code converted to pyton 3.x ====
# INRAE\olivier.vitrac@agroparistech.fr
# History of additions and improvements
# 2022-01-25 first conversion to Python 3.x (rewritting when necessary)
# 2022-02-03 add new displays, and the class frame and the method frame()
# 2022-02-08 add the method kind(), the property type, the operator + (for merging)
# 2022-02-09 vecs accepts inputs as list or tuple: ["id","x","y","z"]
# 2022-02-10 kind has 2 internal styles ("vxyz" and "xyz") and can be supplied with a user style
# 2022-05-02 extend read_snapshot() to store additional ITEMS (realtime from TIME), store aselect as bool instead as float
# 2022-05-02 add realtime() (relatime is based on ITEM tim if available)
# 2024-12-08 updated help
# ======================================
# dump tool
oneline = "Read, write, manipulate dump files and particle attributes"
docstr = """
d = dump("dump.one") read in one or more dump files
d = dump("dump.1 dump.2.gz") can be gzipped
d = dump("dump.*") wildcard expands to multiple files
d = dump("dump.*",0) two args = store filenames, but don't read
incomplete and duplicate snapshots are deleted
atoms will be unscaled if stored in files as scaled
self-describing column names assigned
time = d.next() read next snapshot from dump files
used with 2-argument constructor to allow reading snapshots one-at-a-time
snapshot will be skipped only if another snapshot has same time stamp
return time stamp of snapshot read
return -1 if no snapshots left or last snapshot is incomplete
no column name assignment or unscaling is performed
d.map(1,"id",3,"x") assign names to columns (1-N)
not needed if dump file is self-describing
d.tselect.all() select all timesteps
d.tselect.one(N) select only timestep N
d.tselect.none() deselect all timesteps
d.tselect.skip(M) select every Mth step
d.tselect.test("$t >= 100 and $t < 10000") select matching timesteps
d.delete() delete non-selected timesteps
selecting a timestep also selects all atoms in the timestep
skip() and test() only select from currently selected timesteps
test() uses a Python Boolean expression with $t for timestep value
Python comparison syntax: == != < > <= >= and or
d.aselect.all() select all atoms in all steps
d.aselect.all(N) select all atoms in one step
d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps
d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step
all() with no args selects atoms from currently selected timesteps
test() with one arg selects atoms from currently selected timesteps
test() sub-selects from currently selected atoms
test() uses a Python Boolean expression with $ for atom attributes
Python comparison syntax: == != < > <= >= and or
$name must end with a space
d.write("file") write selected steps/atoms to dump file
d.write("file",head,app) write selected steps/atoms to dump file
d.scatter("tmp") write selected steps/atoms to multiple files
write() can be specified with 2 additional flags
head = 0/1 for no/yes snapshot header, app = 0/1 for write vs append
scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc
d.scale() scale x,y,z to 0-1 for all timesteps
d.scale(100) scale atom coords for timestep N
d.unscale() unscale x,y,z to box size to all timesteps
d.unscale(1000) unscale atom coords for timestep N
d.wrap() wrap x,y,z into periodic box via ix,iy,iz
d.unwrap() unwrap x,y,z out of box via ix,iy,iz
d.owrap("other") wrap x,y,z to same image as another atom
d.sort() sort atoms by atom ID in all selected steps
d.sort("x") sort atoms by column value in all steps
d.sort(1000) sort atoms in timestep N
scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
wrap(), unwrap(), owrap() require ix,iy,iz be defined
owrap() requires a column be defined which contains an atom ID
name of that column is the argument to owrap()
x,y,z for each atom is wrapped to same image as the associated atom ID
useful for wrapping all molecule's atoms the same so it is contiguous
m1,m2 = d.minmax("type") find min/max values for a column
d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value
d.setv("type",vector) set a column to a vector of values
d.spread("ke",N,"color") 2nd col = N ints spread over 1st col
d.clone(1000,"color") clone timestep N values to other steps
minmax() operates on selected timesteps and atoms
set() operates on selected timesteps and atoms
left hand side column is created if necessary
left-hand side column is unset or unchanged for non-selected atoms
equation is in Python syntax
use $ for column names, $name must end with a space
setv() operates on selected timesteps and atoms
if column label does not exist, column is created
values in vector are assigned sequentially to atoms, so may want to sort()
length of vector must match # of selected atoms
spread() operates on selected timesteps and atoms
min and max are found for 1st specified column across all selected atoms
atom's value is linear mapping (1-N) between min and max
that is stored in 2nd column (created if needed)
useful for creating a color map
clone() operates on selected timesteps and atoms
values at every timestep are set to value at timestep N for that atom ID
useful for propagating a color map
t = d.time() return vector of selected timestep values
fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N
fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N
atom() returns vectors with one value for each selected timestep
vecs() returns vectors with one value for each selected atom in the timestep
index,time,flag = d.iterator(0/1) loop over dump snapshots
time,box,atoms,bonds,tris,lines = d.viz(index) return list of viz objects
d.atype = "color" set column returned as "type" by viz
d.extra(obj) extract bond/tri/line info from obj
iterator() loops over selected timesteps
iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
index = index within dump object (0 to # of snapshots)
time = timestep value
flag = -1 when iteration is done, 1 otherwise
viz() returns info for selected atoms for specified timestep index
can also call as viz(time,1) and will find index of preceding snapshot
time = timestep value
box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
atoms = id,type,x,y,z for each atom as 2d array
bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
if extra() used to define bonds, else NULL
tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
if extra() used to define tris, else NULL
lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
if extra() used to define lines, else NULL
atype is column name viz() will return as atom type (def = "type")
extra() extracts bonds/tris/lines from obj each time viz() is called
obj can be data object for bonds, cdata object for tris and lines,
bdump object for bonds, tdump object for tris, ldump object for lines.
mdump object for tris
"""
# History
# 8/05, Steve Plimpton (SNL): original version
# 12/09, David Hart (SNL): allow use of NumPy or Numeric
# ToDo list
# try to optimize this line in read_snap: words += f.readline().split()
# allow $name in aselect.test() and set() to end with non-space
# should next() snapshot be auto-unscaled ?
# Variables
# flist = list of dump file names
# increment = 1 if reading snapshots one-at-a-time
# nextfile = which file to read from via next()
# eof = ptr into current file for where to read via next()
# scale_original = 0/1/-1 if coords were read in as unscaled/scaled/unknown
# nsnaps = # of snapshots
# nselect = # of selected snapshots
# snaps = list of snapshots
# names = dictionary of column names:
# key = "id", value = column # (0 to M-1)
# tselect = class for time selection
# aselect = class for atom selection
# atype = name of vector used as atom type by viz extract
# bondflag = 0 if no bonds, 1 if they are defined statically, 2 if dynamic
# bondlist = static list of bonds to return w/ viz() for all snapshots
# triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic
# trilist = static list of tris to return w/ viz() for all snapshots
# lineflag = 0 if no lines, 1 if they are defined statically, 2 if dynamic
# linelist = static list of lines to return w/ viz() for all snapshots
# objextra = object to get bonds,tris,lines from dynamically
# Snap = one snapshot
# time = time stamp
# tselect = 0/1 if this snapshot selected
# natoms = # of atoms
# boxstr = format string after BOX BOUNDS, if it exists
# triclinic = 0/1 for orthogonal/triclinic based on BOX BOUNDS fields
# nselect = # of selected atoms in this snapshot
# aselect[i] = True/False for each atom
# xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz = box bounds (float)
# atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1
# Imports and external programs
import sys, re, glob, types # commands
from os import popen
from math import * # any function could be used by set() - required for eval
__all__ = ['Frame', 'Snap', 'aselect', 'dump', 'tselect']
try:
import numpy as np
oldnumeric = False
except:
import Numeric as np
oldnumeric = True
try:
from DEFAULTS import PIZZA_GUNZIP
except:
PIZZA_GUNZIP = "gunzip"
# Class definition
class dump:
# --------------------------------------------------------------------
def __init__(self, *list):
self.snaps = []
self.nsnaps = self.nselect = 0
self.names = {}
self.tselect = tselect(self)
self.aselect = aselect(self)
self.atype = "type"
self.bondflag = 0
self.bondlist = []
self.triflag = 0
self.trilist = []
self.lineflag = 0
self.linelist = []
self.objextra = None
# flist = list of all dump file names
words = list[0].split()
self.flist = []
for word in words:
self.flist += glob.glob(word)
if len(self.flist) == 0 and len(list) == 1:
raise ValueError("no dump file specified")
if len(list) == 1:
self.increment = 0
self.read_all()
else:
self.increment = 1
self.nextfile = 0
self.eof = 0
# --------------------------------------------------------------------
def __repr__(self):
times = self.time();
ntimes = len(times)
lastime = times[-1];
fields = self.names;
print("Dump file: %s\ncontains %d frames (tend=%0.4g)\nwith fields" % \
(self.flist[0],ntimes,lastime) )
for k in sorted(fields,key=fields.get,reverse=False):
print("\t%02d: %s" % (fields[k],k) )
ret = 'LAMMPS dump object with %d properties and %d frames (tend=%0.4g, - source="%s"' % \
(len(fields),ntimes,lastime,self.flist[0])
return ret
# --------------------------------------------------------------------
def read_all(self):
# read all snapshots from each file
# test for gzipped files
for file in self.flist:
if file[-3:] == ".gz":
f = popen("%s -c %s" % (PIZZA_GUNZIP, file), "r")
else:
f = open(file)
snap = self.read_snapshot(f)
while snap:
self.snaps.append(snap)
print(snap.time, file=sys.stdout, flush=True, end=" ")
snap = self.read_snapshot(f)
f.close()
print
# sort entries by timestep, cull duplicates
self.snaps.sort() # self.snaps.sort(self.compare_time) #%% to be fixed in the future (OV)
self.cull()
self.nsnaps = len(self.snaps)
print("read %d snapshots" % (self.nsnaps))
# select all timesteps and atoms
self.tselect.all()
# print column assignments
if len(self.names):
print("assigned columns:", ",".join(list(self.names.keys())))
else:
print("no column assignments made")
# if snapshots are scaled, unscale them
if (
(not "x" in self.names)
or (not "y" in self.names)
or (not "z" in self.names)
):
print("dump scaling status is unknown")
elif self.nsnaps > 0:
if self.scale_original == 1:
self.unscale()
elif self.scale_original == 0:
print("dump is already unscaled")
else:
print("dump scaling status is unknown")
# --------------------------------------------------------------------
# read next snapshot from list of files
def next(self):
if not self.increment:
raise ValueError("cannot read incrementally")
# read next snapshot in current file using eof as pointer
# if fail, try next file
# if new snapshot time stamp already exists, read next snapshot
while 1:
f = open(self.flist[self.nextfile], "rb")
f.seek(self.eof)
snap = self.read_snapshot(f)
if not snap:
self.nextfile += 1
if self.nextfile == len(self.flist):
return -1
f.close()
self.eof = 0
continue
self.eof = f.tell()
f.close()
try:
self.findtime(snap.time)
continue
except:
break
# select the new snapshot with all its atoms
self.snaps.append(snap)
snap = self.snaps[self.nsnaps]
snap.tselect = 1
snap.nselect = snap.natoms
for i in range(snap.natoms):
snap.aselect[i] = True
self.nsnaps += 1
self.nselect += 1
return snap.time
# --------------------------------------------------------------------
# read a single snapshot from file f
# return snapshot or 0 if failed
# for first snapshot only:
# assign column names (file must be self-describing)
# set scale_original to 0/1/-1 for unscaled/scaled/unknown
# convert xs,xu to x in names
def read_snapshot(self, f):
""" low-level method to read a snapshot from a file identifier """
# expand the list of keywords if needed (INRAE\Olivier Vitrac)
# "keyname": ["name in snap","type"]
itemkeywords = {"TIME": ["realtime","float"],
"TIMESTEP": ["time","int"],
"NUMBER OF ATOMS": ["natoms","int"]}
try:
snap = Snap()
# read and guess the first keywords based on itemkeywords
found = True
while found:
item = f.readline()
varitem = item.split("ITEM:")[1].strip()
found = varitem in itemkeywords
if found:
tmp = f.readline().split()[0] # just grab 1st field
if itemkeywords[varitem][1]=="int":
valitem = int(tmp)
else:
valitem = float(tmp)
setattr(snap,itemkeywords[varitem][0],valitem)
# prefetch
snap.aselect = np.zeros(snap.natoms,dtype=bool)
# we assume that the next item is BOX BOUNDS (pp ff pp)
words = item.split("BOUNDS ")
if len(words) == 1:
snap.boxstr = ""
else:
snap.boxstr = words[1].strip()
if "xy" in snap.boxstr:
snap.triclinic = 1
else:
snap.triclinic = 0
words = f.readline().split()
if len(words) == 2:
snap.xlo, snap.xhi, snap.xy = float(words[0]), float(words[1]), 0.0
else:
snap.xlo, snap.xhi, snap.xy = (
float(words[0]),
float(words[1]),
float(words[2]),
)
words = f.readline().split()
if len(words) == 2:
snap.ylo, snap.yhi, snap.xz = float(words[0]), float(words[1]), 0.0
else:
snap.ylo, snap.yhi, snap.xz = (
float(words[0]),
float(words[1]),
float(words[2]),
)
words = f.readline().split()
if len(words) == 2:
snap.zlo, snap.zhi, snap.yz = float(words[0]), float(words[1]), 0.0
else:
snap.zlo, snap.zhi, snap.yz = (
float(words[0]),
float(words[1]),
float(words[2]),
)
item = f.readline()
if len(self.names) == 0:
self.scale_original = -1
xflag = yflag = zflag = -1
words = item.split()[2:]
if len(words):
for i in range(len(words)):
if words[i] == "x" or words[i] == "xu":
xflag = 0
self.names["x"] = i
elif words[i] == "xs" or words[i] == "xsu":
xflag = 1
self.names["x"] = i
elif words[i] == "y" or words[i] == "yu":
yflag = 0
self.names["y"] = i
elif words[i] == "ys" or words[i] == "ysu":
yflag = 1
self.names["y"] = i
elif words[i] == "z" or words[i] == "zu":
zflag = 0
self.names["z"] = i
elif words[i] == "zs" or words[i] == "zsu":
zflag = 1
self.names["z"] = i
else:
self.names[words[i]] = i
if xflag == 0 and yflag == 0 and zflag == 0:
self.scale_original = 0
if xflag == 1 and yflag == 1 and zflag == 1:
self.scale_original = 1
if snap.natoms:
words = f.readline().split()
ncol = len(words)
for i in range(1, snap.natoms):
words += f.readline().split()
floats = list(map(float, words))
if oldnumeric:
atoms = np.zeros((snap.natoms, ncol), np.float64)
else:
atoms = np.zeros((snap.natoms, ncol), np.float64)
start = 0
stop = ncol
for i in range(snap.natoms):
atoms[i] = floats[start:stop]
start = stop
stop += ncol
else:
atoms = None
snap.atoms = atoms
return snap
except:
return 0
# --------------------------------------------------------------------
# map atom column names
def map(self, *pairs):
if len(pairs) % 2 != 0:
raise ValueError("dump map() requires pairs of mappings")
for i in range(0, len(pairs), 2):
j = i + 1
self.names[pairs[j]] = pairs[i] - 1
# --------------------------------------------------------------------
# delete unselected snapshots
def delete(self):
ndel = i = 0
while i < self.nsnaps:
if not self.snaps[i].tselect:
del self.snaps[i]
self.nsnaps -= 1
ndel += 1
else:
i += 1
print("%d snapshots deleted" % ndel)
print("%d snapshots remaining" % self.nsnaps)
# --------------------------------------------------------------------
# scale coords to 0-1 for all snapshots or just one
# use 6 params as h-matrix to treat orthongonal or triclinic boxes
def scale(self, *list):
if len(list) == 0:
print("Scaling dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
for snap in self.snaps:
self.scale_one(snap, x, y, z)
else:
i = self.findtime(list[0])
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
self.scale_one(self.snaps[i], x, y, z)
# --------------------------------------------------------------------
def scale_one(self, snap, x, y, z):
if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0:
xprdinv = 1.0 / (snap.xhi - snap.xlo)
yprdinv = 1.0 / (snap.yhi - snap.ylo)
zprdinv = 1.0 / (snap.zhi - snap.zlo)
atoms = snap.atoms
if atoms != None:
atoms[:, x] = (atoms[:, x] - snap.xlo) * xprdinv
atoms[:, y] = (atoms[:, y] - snap.ylo) * yprdinv
atoms[:, z] = (atoms[:, z] - snap.zlo) * zprdinv
else:
xlo_bound = snap.xlo
xhi_bound = snap.xhi
ylo_bound = snap.ylo
yhi_bound = snap.yhi
zlo_bound = snap.zlo
zhi_bound = snap.zhi
xy = snap.xy
xz = snap.xz
yz = snap.yz
xlo = xlo_bound - min((0.0, xy, xz, xy + xz))
xhi = xhi_bound - max((0.0, xy, xz, xy + xz))
ylo = ylo_bound - min((0.0, yz))
yhi = yhi_bound - max((0.0, yz))
zlo = zlo_bound
zhi = zhi_bound
h0 = xhi - xlo
h1 = yhi - ylo
h2 = zhi - zlo
h3 = yz
h4 = xz
h5 = xy
h0inv = 1.0 / h0
h1inv = 1.0 / h1
h2inv = 1.0 / h2
h3inv = yz / (h1 * h2)
h4inv = (h3 * h5 - h1 * h4) / (h0 * h1 * h2)
h5inv = xy / (h0 * h1)
atoms = snap.atoms
if atoms != None:
atoms[:, x] = (
(atoms[:, x] - snap.xlo) * h0inv
+ (atoms[:, y] - snap.ylo) * h5inv
+ (atoms[:, z] - snap.zlo) * h4inv
)
atoms[:, y] = (atoms[:, y] - snap.ylo) * h1inv + (
atoms[:, z] - snap.zlo
) * h3inv
atoms[:, z] = (atoms[:, z] - snap.zlo) * h2inv
# --------------------------------------------------------------------
# unscale coords from 0-1 to box size for all snapshots or just one
# use 6 params as h-matrix to treat orthongonal or triclinic boxes
def unscale(self, *list):
if len(list) == 0:
print("Unscaling dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
for snap in self.snaps:
self.unscale_one(snap, x, y, z)
else:
i = self.findtime(list[0])
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
self.unscale_one(self.snaps[i], x, y, z)
# --------------------------------------------------------------------
def unscale_one(self, snap, x, y, z):
if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
if atoms != None:
atoms[:, x] = snap.xlo + atoms[:, x] * xprd
atoms[:, y] = snap.ylo + atoms[:, y] * yprd
atoms[:, z] = snap.zlo + atoms[:, z] * zprd
else:
xlo_bound = snap.xlo
xhi_bound = snap.xhi
ylo_bound = snap.ylo
yhi_bound = snap.yhi
zlo_bound = snap.zlo
zhi_bound = snap.zhi
xy = snap.xy
xz = snap.xz
yz = snap.yz
xlo = xlo_bound - min((0.0, xy, xz, xy + xz))
xhi = xhi_bound - max((0.0, xy, xz, xy + xz))
ylo = ylo_bound - min((0.0, yz))
yhi = yhi_bound - max((0.0, yz))
zlo = zlo_bound
zhi = zhi_bound
h0 = xhi - xlo
h1 = yhi - ylo
h2 = zhi - zlo
h3 = yz
h4 = xz
h5 = xy
atoms = snap.atoms
if atoms != None:
atoms[:, x] = (
snap.xlo + atoms[:, x] * h0 + atoms[:, y] * h5 + atoms[:, z] * h4
)
atoms[:, y] = snap.ylo + atoms[:, y] * h1 + atoms[:, z] * h3
atoms[:, z] = snap.zlo + atoms[:, z] * h2
# --------------------------------------------------------------------
# wrap coords from outside box to inside
def wrap(self):
print("Wrapping dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
atoms[:, x] -= atoms[:, ix] * xprd
atoms[:, y] -= atoms[:, iy] * yprd
atoms[:, z] -= atoms[:, iz] * zprd
# --------------------------------------------------------------------
# unwrap coords from inside box to outside
def unwrap(self):
print("Unwrapping dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
atoms[:, x] += atoms[:, ix] * xprd
atoms[:, y] += atoms[:, iy] * yprd
atoms[:, z] += atoms[:, iz] * zprd
# --------------------------------------------------------------------
# wrap coords to same image as atom ID stored in "other" column
# if dynamic extra lines or triangles defined, owrap them as well
def owrap(self, other):
print("Wrapping to other ...")
id = self.names["id"]
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
iother = self.names[other]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
ids = {}
for i in range(snap.natoms):
ids[atoms[i][id]] = i
for i in range(snap.natoms):
j = ids[atoms[i][iother]]
atoms[i][x] += (atoms[i][ix] - atoms[j][ix]) * xprd
atoms[i][y] += (atoms[i][iy] - atoms[j][iy]) * yprd
atoms[i][z] += (atoms[i][iz] - atoms[j][iz]) * zprd
# should bonds also be owrapped ?
if self.lineflag == 2 or self.triflag == 2:
self.objextra.owrap(
snap.time, xprd, yprd, zprd, ids, atoms, iother, ix, iy, iz
)
# --------------------------------------------------------------------
# convert column names assignment to a string, in column order
def names2str(self):
# <-- Python 2.x -->
# pairs = self.names.items()
# values = self.names.values()
# ncol = len(pairs)
# str = ""
# for i in range(ncol):
# if i in values: str += pairs[values.index(i)][0] + ' '
# <-- Python 3.x -->
str = ""
for k in sorted(self.names, key=self.names.get, reverse=False):
str += k + " "
return str
# --------------------------------------------------------------------
# sort atoms by atom ID in all selected timesteps by default
# if arg = string, sort all steps by that column
# if arg = numeric, sort atoms in single step
def sort(self, *listarg):
if len(listarg) == 0:
print("Sorting selected snapshots ...")
id = self.names["id"]
for snap in self.snaps:
if snap.tselect:
self.sort_one(snap, id)
elif type(listarg[0]) is types.StringType:
print("Sorting selected snapshots by %s ..." % listarg[0])
id = self.names[listarg[0]]
for snap in self.snaps:
if snap.tselect:
self.sort_one(snap, id)
else:
i = self.findtime(listarg[0])
id = self.names["id"]
self.sort_one(self.snaps[i], id)
# --------------------------------------------------------------------
# sort a single snapshot by ID column
def sort_one(self, snap, id):
atoms = snap.atoms
ids = atoms[:, id]
ordering = np.argsort(ids)
for i in range(len(atoms[0])):
atoms[:, i] = np.take(atoms[:, i], ordering)
# --------------------------------------------------------------------
# write a single dump file from current selection
def write(self, file, header=1, append=0):
if len(self.snaps):
namestr = self.names2str()
if not append:
f = open(file, "w")
else:
f = open(file, "a")
if "id" in self.names:
id = self.names["id"]
else:
id = -1
if "type" in self.names:
type = self.names["type"]
else:
type = -1
for snap in self.snaps:
if not snap.tselect:
continue
print(snap.time, file=sys.stdout, flush=True)
if header:
print("ITEM: TIMESTEP", file=f)
print(snap.time, file=f)
print("ITEM: NUMBER OF ATOMS", file=f)
print(snap.nselect, file=f)
if snap.boxstr:
print("ITEM: BOX BOUNDS", snap.boxstr, file=f)
else:
print("ITEM: BOX BOUNDS", file=f)
if snap.triclinic:
print(snap.xlo, snap.xhi, snap.xy, file=f)
print(snap.ylo, snap.yhi, snap.xz, file=f)
print(snap.zlo, snap.zhi, snap.yz, file=f)
else:
print(snap.xlo, snap.xhi, file=f)
print(snap.ylo, snap.yhi, file=f)
print(snap.zlo, snap.zhi, file=f)
print("ITEM: ATOMS", namestr, file=f)
atoms = snap.atoms
nvalues = len(atoms[0])
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
line = ""
for j in range(nvalues):
if j == id or j == type:
line += str(int(atoms[i][j])) + " "
else:
line += str(atoms[i][j]) + " "
print(line, file=f)
f.close()
print("\n%d snapshots" % self.nselect)
# --------------------------------------------------------------------
# write one dump file per snapshot from current selection
def scatter(self, root):
if len(self.snaps):
namestr = self.names2str()
for snap in self.snaps:
if not snap.tselect:
continue
print(snap.time, file=sys.stdout, flush=True)
file = root + "." + str(snap.time)
f = open(file, "w")
print("ITEM: TIMESTEP", file=f)
print(snap.time, file=f)
print("ITEM: NUMBER OF ATOMS", file=f)
print(snap.nselect, file=f)
if snap.boxstr:
print("ITEM: BOX BOUNDS", snap.boxstr, file=f)
else:
print("ITEM: BOX BOUNDS", file=f)
if snap.triclinic:
print(snap.xlo, snap.xhi, snap.xy, file=f)
print(snap.ylo, snap.yhi, snap.xz, file=f)
print(snap.zlo, snap.zhi, snap.yz, file=f)
else:
print(snap.xlo, snap.xhi, file=f)
print(snap.ylo, snap.yhi, file=f)
print(snap.zlo, snap.zhi, file=f)
print("ITEM: ATOMS", namestr, file=f)
atoms = snap.atoms
nvalues = len(atoms[0])
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
line = ""
for j in range(nvalues):
if j < 2:
line += str(int(atoms[i][j])) + " "
else:
line += str(atoms[i][j]) + " "
print(line, file=f)
f.close()
print("\n%d snapshots" % self.nselect)
# --------------------------------------------------------------------
# find min/max across all selected snapshots/atoms for a particular column
def minmax(self, colname):
icol = self.names[colname]
min = 1.0e20
max = -min
for snap in self.snaps:
if not snap.tselect:
continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
if atoms[i][icol] < min:
min = atoms[i][icol]
if atoms[i][icol] > max:
max = atoms[i][icol]
return (min, max)
# --------------------------------------------------------------------
# set a column value via an equation for all selected snapshots
def set(self, eq):
print("Setting ...")
pattern = "\$\w*"
list = re.findall(pattern, eq)
lhs = list[0][1:]
if not self.names.has_key(lhs):
self.newcolumn(lhs)
for item in list:
name = item[1:]
column = self.names[name]
insert = "snap.atoms[i][%d]" % (column)
eq = eq.replace(item, insert)
ceq = compile(eq, "", "single")
for snap in self.snaps:
if not snap.tselect:
continue
for i in range(snap.natoms):
if snap.aselect[i]:
exec(ceq)
# --------------------------------------------------------------------
# set a column value via an input vec for all selected snapshots/atoms
def setv(self, colname, vec):
print("Setting ...")
if not self.names.has_key(colname):
self.newcolumn(colname)
icol = self.names[colname]
for snap in self.snaps:
if not snap.tselect:
continue
if snap.nselect != len(vec):
raise ValueError("vec length does not match # of selected atoms")
atoms = snap.atoms
m = 0
for i in range(snap.natoms):
if snap.aselect[i]:
atoms[i][icol] = vec[m]
m += 1
# --------------------------------------------------------------------
# clone value in col across selected timesteps for atoms with same ID
def clone(self, nstep, col):
istep = self.findtime(nstep)
icol = self.names[col]
id = self.names["id"]
ids = {}
for i in range(self.snaps[istep].natoms):
ids[self.snaps[istep].atoms[i][id]] = i
for snap in self.snaps:
if not snap.tselect:
continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
j = ids[atoms[i][id]]
atoms[i][icol] = self.snaps[istep].atoms[j][icol]
# --------------------------------------------------------------------
# values in old column are spread as ints from 1-N and assigned to new column
def spread(self, old, n, new):
iold = self.names[old]
if not self.names.has_key(new):
self.newcolumn(new)
inew = self.names[new]
min, max = self.minmax(old)
print("min/max = ", min, max)
gap = max - min
invdelta = n / gap
for snap in self.snaps:
if not snap.tselect:
continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
ivalue = int((atoms[i][iold] - min) * invdelta) + 1
if ivalue > n:
ivalue = n
if ivalue < 1:
ivalue = 1
atoms[i][inew] = ivalue
# --------------------------------------------------------------------
# return vector of selected snapshot time stamps
# time is based on TIMESTEP item
# realtime is based on TIME item
def time(self):
""" timestep as stored: time()"""
vec = self.nselect * [0]
i = 0
for snap in self.snaps:
if not snap.tselect:
continue
vec[i] = snap.time
i += 1
return vec
def realtime(self):
""" time as simulated: realtime() """
vec = self.nselect * [0.0]
i = 0
for snap in self.snaps:
if not snap.tselect or not hasattr(snap,"realtime"):
continue
vec[i] = snap.realtime
i += 1
return vec
# --------------------------------------------------------------------
# extract vector(s) of values for atom ID n at each selected timestep
def atom(self, n, *list):
if len(list) == 0:
raise ValueError("no columns specified")
columns = []
values = []
for name in list:
columns.append(self.names[name])
values.append(self.nselect * [0])
ncol = len(columns)
id = self.names["id"]
m = 0
for snap in self.snaps:
if not snap.tselect:
continue
atoms = snap.atoms
for i in range(snap.natoms):
if atoms[i][id] == n:
break
if atoms[i][id] != n:
raise ValueError("could not find atom ID in snapshot")
for j in range(ncol):
values[j][m] = atoms[i][columns[j]]
m += 1
if len(list) == 1:
return values[0]
else:
return values
# --------------------------------------------------------------------
# extract vector(s) of values for selected atoms at chosen timestep
def vecs(self, n, *colname):
"""
vecs(timeste,columname1,columname2,...)
Examples:
tab = vecs(timestep,"id","x","y")
tab = vecs(timestep,["id","x","y"],"z")
X.vecs(X.time()[50],"vx","vy")
"""
snap = self.snaps[self.findtime(n)]
if len(colname) == 0:
raise ValueError("no columns specified")
if isinstance(colname[0],tuple):
colname = list(colname[0]) + list(colname[1:])
if isinstance(colname[0],list):
colname = colname[0] + list(colname[1:])
columns = []
values = []
for name in colname:
columns.append(self.names[name])
values.append(snap.nselect * [0])
ncol = len(columns)
m = 0
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
for j in range(ncol):
values[j][m] = snap.atoms[i][columns[j]]
m += 1
if len(colname) == 1:
return values[0]
else:
return values
# --------------------------------------------------------------------
# add a new column to every snapshot and set value to 0
# set the name of the column to str
def newcolumn(self, str):
ncol = len(self.snaps[0].atoms[0])
self.map(ncol + 1, str)
for snap in self.snaps:
# commented because not used
# atoms = snap.atoms
if oldnumeric:
newatoms = np.zeros((snap.natoms, ncol + 1), np.Float)
else:
newatoms = np.zeros((snap.natoms, ncol + 1), np.float)
newatoms[:, 0:ncol] = snap.atoms
snap.atoms = newatoms
# --------------------------------------------------------------------
# sort snapshots on time stamp
def compare_time(self, a, b):
if a.time < b.time:
return -1
elif a.time > b.time:
return 1
else:
return 0
# --------------------------------------------------------------------
# delete successive snapshots with duplicate time stamp
def cull(self):
i = 1
while i < len(self.snaps):
if self.snaps[i].time == self.snaps[i - 1].time:
del self.snaps[i]
else:
i += 1
# --------------------------------------------------------------------
# iterate over selected snapshots
def iterator(self, flag):
start = 0
if flag:
start = self.iterate + 1
for i in range(start, self.nsnaps):
if self.snaps[i].tselect:
self.iterate = i
return i, self.snaps[i].time, 1
return 0, 0, -1
# --------------------------------------------------------------------
# return list of atoms to viz for snapshot isnap
# if called with flag, then index is timestep, so convert to snapshot index
# augment with bonds, tris, lines if extra() was invoked
def viz(self, index, flag=0):
if not flag:
isnap = index
else:
times = self.time()
n = len(times)
i = 0
while i < n:
if times[i] > index:
break
i += 1
isnap = i - 1
snap = self.snaps[isnap]
time = snap.time
box = [snap.xlo, snap.ylo, snap.zlo, snap.xhi, snap.yhi, snap.zhi]
id = self.names["id"]
type = self.names[self.atype]
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
# create atom list needed by viz from id,type,x,y,z
# need Numeric/Numpy mode here
atoms = []
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
atom = snap.atoms[i]
atoms.append([atom[id], atom[type], atom[x], atom[y], atom[z]])
# create list of bonds from static or dynamic bond list
# then generate bond coords from bondlist
# alist = dictionary of atom IDs for atoms list
# lookup bond atom IDs in alist and grab their coords
# try is used since some atoms may be unselected
# any bond with unselected atom is not added to bonds
# need Numeric/Numpy mode here
bonds = []
if self.bondflag:
if self.bondflag == 1:
bondlist = self.bondlist
elif self.bondflag == 2:
tmp1, tmp2, tmp3, bondlist, tmp4, tmp5 = self.objextra.viz(time, 1)
alist = {}
for i in range(len(atoms)):
alist[int(atoms[i][0])] = i
for bond in bondlist:
try:
i = alist[bond[2]]
j = alist[bond[3]]
atom1 = atoms[i]
atom2 = atoms[j]
bonds.append(
[
bond[0],
bond[1],
atom1[2],
atom1[3],
atom1[4],
atom2[2],
atom2[3],
atom2[4],
atom1[1],
atom2[1],
]
)
except:
continue
# create list of tris from static or dynamic tri list
# if dynamic, could eliminate tris for unselected atoms
tris = []
if self.triflag:
if self.triflag == 1:
tris = self.trilist
elif self.triflag == 2:
tmp1, tmp2, tmp3, tmp4, tris, tmp5 = self.objextra.viz(time, 1)
# create list of lines from static or dynamic tri list
# if dynamic, could eliminate lines for unselected atoms
lines = []
if self.lineflag:
if self.lineflag == 1:
lines = self.linelist
elif self.lineflag == 2:
tmp1, tmp2, tmp3, tmp4, tmp5, lines = self.objextra.viz(time, 1)
return time, box, atoms, bonds, tris, lines
# --------------------------------------------------------------------
def findtime(self, n):
for i in range(self.nsnaps):
if self.snaps[i].time == n:
return i
raise ValueError("no step %d exists" % n)
# --------------------------------------------------------------------
# return maximum box size across all selected snapshots
def maxbox(self):
xlo = ylo = zlo = None
xhi = yhi = zhi = None
for snap in self.snaps:
if not snap.tselect:
continue
if xlo == None or snap.xlo < xlo:
xlo = snap.xlo
if xhi == None or snap.xhi > xhi:
xhi = snap.xhi
if ylo == None or snap.ylo < ylo:
ylo = snap.ylo
if yhi == None or snap.yhi > yhi:
yhi = snap.yhi
if zlo == None or snap.zlo < zlo:
zlo = snap.zlo
if zhi == None or snap.zhi > zhi:
zhi = snap.zhi
return [xlo, ylo, zlo, xhi, yhi, zhi]
# --------------------------------------------------------------------
# return maximum atom type across all selected snapshots and atoms
def maxtype(self):
icol = self.names["type"]
max = 0
for snap in self.snaps:
if not snap.tselect:
continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
if atoms[i][icol] > max:
max = atoms[i][icol]
return int(max)
# --------------------------------------------------------------------
# grab bonds/tris/lines from another object
# if static, grab once, else store obj to grab dynamically
def extra(self, arg):
# data object, grab bonds statically
if type(arg) is types.InstanceType and ".data" in str(arg.__class__):
self.bondflag = 0
try:
bondlist = []
bondlines = arg.sections["Bonds"]
for line in bondlines:
words = line.split()
bondlist.append(
[int(words[0]), int(words[1]), int(words[2]), int(words[3])]
)
if bondlist:
self.bondflag = 1
self.bondlist = bondlist
except:
raise ValueError("could not extract bonds from data object")
# cdata object, grab tris and lines statically
elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__):
self.triflag = self.lineflag = 0
try:
tmp, tmp, tmp, tmp, tris, lines = arg.viz(0)
if tris:
self.triflag = 1
self.trilist = tris
if lines:
self.lineflag = 1
self.linelist = lines
except:
raise ValueError("could not extract tris/lines from cdata object")
# mdump object, grab tris dynamically
elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__):
self.triflag = 2
self.objextra = arg
# bdump object, grab bonds dynamically
elif type(arg) is types.InstanceType and ".bdump" in str(arg.__class__):
self.bondflag = 2
self.objextra = arg
# ldump object, grab lines dynamically
elif type(arg) is types.InstanceType and ".ldump" in str(arg.__class__):
self.lineflag = 2
self.objextra = arg
# tdump object, grab tris dynamically
elif type(arg) is types.InstanceType and ".tdump" in str(arg.__class__):
self.triflag = 2
self.objextra = arg
else:
raise ValueError("unrecognized argument to dump.extra()")
# --------------------------------------------------------------------
def compare_atom(self, a, b):
if a[0] < b[0]:
return -1
elif a[0] > b[0]:
return 1
else:
return 0
# --------------------------------------------------------------------
def frame(self,iframe):
""" simplified class to access properties of a snapshot
(INRAE\Olivier Vitrac) """
nframes= len(self.time());
if iframe>=nframes:
raise ValueError("the frame index should be ranged between 0 and %d" % nframes)
elif iframe<0:
iframe = iframe % nframes
times = self.time()
fields = self.names
snap = self.snaps[iframe]
frame = Frame()
frame.dumpfile = self.flist[0]
frame.time = times[iframe]
frame.description = {"dumpfile": "dumpobject.flist[0]", "time": "dumpobject.times()[]"}
for k in sorted(fields,key=fields.get,reverse=False):
kvalid = k # valid key name
for rep in ["[","]","#","~","-","_","(",")",",",".",";"]:
kvalid = kvalid.replace(rep,"")
frame.description[kvalid] = k
frame.__dict__[kvalid] = snap.atoms[:,fields[k]]
return frame
# --------------------------------------------------------------------
def kind(self,listtypes=None):
""" guessed kind of dump file based on column names
(possibility to supply a personnalized list)
(INRAE\Olivier Vitrac) """
if listtypes==None:
listtypes = {
'vxyz': ["id","type","x","y","z","vx","vy","vz"],
'xyz': ["id","type","x","y","z"]
}
internaltypes = True
else:
listtypes = {"usertype":listtypes}
internaltypes = False
for t in listtypes:
if len(listtypes[t])==0:
ismatching = False
else:
ismatching = True
for field in listtypes[t]:
ismatching = ismatching and field in self.names
if ismatching: break
if ismatching:
if internaltypes:
return t
else:
return True
else:
if internaltypes:
return None
else:
return False
# --------------------------------------------------------------------
@property
def type(self):
""" type of dump file defined as a hash of column names """
return hash(self.names2str())
# --------------------------------------------------------------------
def __add__(self,o):
""" merge dump objects of the same kind/type """
if not isinstance(o,dump):
raise ValueError("the second operand is not a dump object")
elif self.type != o.type:
raise ValueError("the dumps are not of the same type")
twofiles = self.flist[0] + " " + o.flist[0]
return dump(twofiles)
# --------------------------------------------------------------------
# --------------------------------------------------------------------
# one snapshot
class Snap:
def __init__(self):
pass
def __eq__(self, o):
return self.time == o.time
def __ne__(self, o):
return self.time != o.time
def __lt__(self, o):
return self.time < o.time
def __gt__(self, o):
return self.time > o.time
def __le__(self, o):
return self.time <= o.time
def __ge__(self, o):
return self.time >= o.time
def __repr__(self):
ret = "LAMMPS Snap object from dump for t=%0.4g" % self.time
return ret
# --------------------------------------------------------------------
# one Frame (close to Snap but with fields) - OV 2022-02-03
class Frame:
""" Frame class """
def __init__(self):
pass
def __eq__(self, o):
return self.time == o.time
def __ne__(self, o):
return self.time != o.time
def __lt__(self, o):
return self.time < o.time
def __gt__(self, o):
return self.time > o.time
def __le__(self, o):
return self.time <= o.time
def __ge__(self, o):
return self.time >= o.time
def __repr__(self):
print("Frame-dump object with the following fields and their match in the original dump file:\n(sorted order)")
print("\n".join("{}\t<-\t{}".format(k, v) for k, v in sorted(self.description.items(), key=lambda t: str(t[0]))))
ret = 'LAMMPS frame object from dumpfile ("%s") for t=%0.4g' \
% (self.dumpfile,self.time)
return ret
# --------------------------------------------------------------------
# time selection class
class tselect:
def __init__(self, data):
self.data = data
# --------------------------------------------------------------------
def all(self):
data = self.data
for snap in data.snaps:
snap.tselect = 1
data.nselect = len(data.snaps)
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
# --------------------------------------------------------------------
def one(self, n):
data = self.data
for snap in data.snaps:
snap.tselect = 0
i = data.findtime(n)
data.snaps[i].tselect = 1
data.nselect = 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
# --------------------------------------------------------------------
def none(self):
data = self.data
for snap in data.snaps:
snap.tselect = 0
data.nselect = 0
print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
# --------------------------------------------------------------------
def skip(self, n):
data = self.data
count = n - 1
for snap in data.snaps:
if not snap.tselect:
continue
count += 1
if count == n:
count = 0
continue
snap.tselect = 0
data.nselect -= 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
# --------------------------------------------------------------------
def test(self, teststr):
data = self.data
snaps = data.snaps
# Python 2.x
# cmd = "flag = " + teststr.replace("$t","snaps[i].time")
# ccmd = compile(cmd,'','single')
# Python 3.x
evalcmd = teststr.replace("$t", "snaps[i].time")
for i in range(data.nsnaps):
if not snaps[i].tselect:
continue
# Python 2.x
# exec(ccmd)
flag = eval(evalcmd)
if not flag:
snaps[i].tselect = 0
data.nselect -= 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
# --------------------------------------------------------------------
# atom selection class
class aselect:
def __init__(self, data):
""" private constructor (not to be used directly) """
self.data = data
# --------------------------------------------------------------------
def all(self, *args):
"""
select all atoms:
aselect.all()
aselect.all(timestep)
"""
data = self.data
if len(args) == 0: # all selected timesteps
for snap in data.snaps:
if not snap.tselect:
continue
for i in range(snap.natoms):
snap.aselect[i] = True
snap.nselect = snap.natoms
else: # one timestep
n = data.findtime(args[0])
snap = data.snaps[n]
for i in range(snap.natoms):
snap.aselect[i] = True
snap.nselect = snap.natoms
# --------------------------------------------------------------------
def test(self, teststr, *args):
""""
aselect.test(stringexpression [,timestep])
example: aselect.test("$y>0.4e-3 and $y<0.6e-3")
"""
data = self.data
# replace all $var with snap.atoms references and compile test string
pattern = "\$\w*"
list = re.findall(pattern, teststr)
for item in list:
name = item[1:]
column = data.names[name]
insert = "snap.atoms[i][%d]" % column
teststr = teststr.replace(item, insert)
# Python 2.x
# cmd = "flag = " + teststr
# ccmd = compile(cmd,'','single')
# Python 3.x
evalcmd = teststr
if len(args) == 0: # all selected timesteps
for snap in data.snaps:
if not snap.tselect:
continue
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
# Python 2.x
# exec(ccmd)
# Python 3.x
flag = eval(evalcmd)
if not flag:
snap.aselect[i] = False
snap.nselect -= 1
for i in range(data.nsnaps):
if data.snaps[i].tselect:
print(
"%d atoms of %d selected in first step %d"
% (
data.snaps[i].nselect,
data.snaps[i].natoms,
data.snaps[i].time,
)
)
break
for i in range(data.nsnaps - 1, -1, -1):
if data.snaps[i].tselect:
print(
"%d atoms of %d selected in last step %d"
% (
data.snaps[i].nselect,
data.snaps[i].natoms,
data.snaps[i].time,
)
)
break
else: # one timestep
n = data.findtime(args[0])
snap = data.snaps[n]
for i in range(snap.natoms):
if not snap.aselect[i]:
continue
# Python 2.x
# exec(ccmd)
# Python 3.x
flag = eval(evalcmd)
if not flag:
snap.aselect[i] = False
snap.nselect -= 1
# %% DEBUG
# ===================================================
# main()
# ===================================================
# for debugging purposes (code called as a script)
# the code is called from here
# ===================================================
if __name__ == '__main__':
#X = dump("../issues/time/dump.vwall_0.01")
f1 = "../data/play_data/dump.play.1frames"
f2 = "../data/play_data/dump.play.50frames"
X1 = dump(f1)
X1.kind()
X1.type
X50 = dump(f2)
X50.kind()
X50.type
X = X50 + X1
xy=X.vecs(82500,('x','y'))
Classes
class Frame
-
Frame class
Expand source code
class Frame: """ Frame class """ def __init__(self): pass def __eq__(self, o): return self.time == o.time def __ne__(self, o): return self.time != o.time def __lt__(self, o): return self.time < o.time def __gt__(self, o): return self.time > o.time def __le__(self, o): return self.time <= o.time def __ge__(self, o): return self.time >= o.time def __repr__(self): print("Frame-dump object with the following fields and their match in the original dump file:\n(sorted order)") print("\n".join("{}\t<-\t{}".format(k, v) for k, v in sorted(self.description.items(), key=lambda t: str(t[0])))) ret = 'LAMMPS frame object from dumpfile ("%s") for t=%0.4g' \ % (self.dumpfile,self.time) return ret
class Snap
-
Expand source code
class Snap: def __init__(self): pass def __eq__(self, o): return self.time == o.time def __ne__(self, o): return self.time != o.time def __lt__(self, o): return self.time < o.time def __gt__(self, o): return self.time > o.time def __le__(self, o): return self.time <= o.time def __ge__(self, o): return self.time >= o.time def __repr__(self): ret = "LAMMPS Snap object from dump for t=%0.4g" % self.time return ret
class aselect (data)
-
private constructor (not to be used directly)
Expand source code
class aselect: def __init__(self, data): """ private constructor (not to be used directly) """ self.data = data # -------------------------------------------------------------------- def all(self, *args): """ select all atoms: aselect.all() aselect.all(timestep) """ data = self.data if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): snap.aselect[i] = True snap.nselect = snap.natoms else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): snap.aselect[i] = True snap.nselect = snap.natoms # -------------------------------------------------------------------- def test(self, teststr, *args): """" aselect.test(stringexpression [,timestep]) example: aselect.test("$y>0.4e-3 and $y<0.6e-3") """ data = self.data # replace all $var with snap.atoms references and compile test string pattern = "\$\w*" list = re.findall(pattern, teststr) for item in list: name = item[1:] column = data.names[name] insert = "snap.atoms[i][%d]" % column teststr = teststr.replace(item, insert) # Python 2.x # cmd = "flag = " + teststr # ccmd = compile(cmd,'','single') # Python 3.x evalcmd = teststr if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): if not snap.aselect[i]: continue # Python 2.x # exec(ccmd) # Python 3.x flag = eval(evalcmd) if not flag: snap.aselect[i] = False snap.nselect -= 1 for i in range(data.nsnaps): if data.snaps[i].tselect: print( "%d atoms of %d selected in first step %d" % ( data.snaps[i].nselect, data.snaps[i].natoms, data.snaps[i].time, ) ) break for i in range(data.nsnaps - 1, -1, -1): if data.snaps[i].tselect: print( "%d atoms of %d selected in last step %d" % ( data.snaps[i].nselect, data.snaps[i].natoms, data.snaps[i].time, ) ) break else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): if not snap.aselect[i]: continue # Python 2.x # exec(ccmd) # Python 3.x flag = eval(evalcmd) if not flag: snap.aselect[i] = False snap.nselect -= 1
Methods
def all(self, *args)
-
select all atoms: aselect.all() aselect.all(timestep)
Expand source code
def all(self, *args): """ select all atoms: aselect.all() aselect.all(timestep) """ data = self.data if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): snap.aselect[i] = True snap.nselect = snap.natoms else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): snap.aselect[i] = True snap.nselect = snap.natoms
def test(self, teststr, *args)
-
" aselect.test(stringexpression [,timestep]) example: aselect.test("$y>0.4e-3 and $y<0.6e-3")
Expand source code
def test(self, teststr, *args): """" aselect.test(stringexpression [,timestep]) example: aselect.test("$y>0.4e-3 and $y<0.6e-3") """ data = self.data # replace all $var with snap.atoms references and compile test string pattern = "\$\w*" list = re.findall(pattern, teststr) for item in list: name = item[1:] column = data.names[name] insert = "snap.atoms[i][%d]" % column teststr = teststr.replace(item, insert) # Python 2.x # cmd = "flag = " + teststr # ccmd = compile(cmd,'','single') # Python 3.x evalcmd = teststr if len(args) == 0: # all selected timesteps for snap in data.snaps: if not snap.tselect: continue for i in range(snap.natoms): if not snap.aselect[i]: continue # Python 2.x # exec(ccmd) # Python 3.x flag = eval(evalcmd) if not flag: snap.aselect[i] = False snap.nselect -= 1 for i in range(data.nsnaps): if data.snaps[i].tselect: print( "%d atoms of %d selected in first step %d" % ( data.snaps[i].nselect, data.snaps[i].natoms, data.snaps[i].time, ) ) break for i in range(data.nsnaps - 1, -1, -1): if data.snaps[i].tselect: print( "%d atoms of %d selected in last step %d" % ( data.snaps[i].nselect, data.snaps[i].natoms, data.snaps[i].time, ) ) break else: # one timestep n = data.findtime(args[0]) snap = data.snaps[n] for i in range(snap.natoms): if not snap.aselect[i]: continue # Python 2.x # exec(ccmd) # Python 3.x flag = eval(evalcmd) if not flag: snap.aselect[i] = False snap.nselect -= 1
class dump (*list)
-
Expand source code
class dump: # -------------------------------------------------------------------- def __init__(self, *list): self.snaps = [] self.nsnaps = self.nselect = 0 self.names = {} self.tselect = tselect(self) self.aselect = aselect(self) self.atype = "type" self.bondflag = 0 self.bondlist = [] self.triflag = 0 self.trilist = [] self.lineflag = 0 self.linelist = [] self.objextra = None # flist = list of all dump file names words = list[0].split() self.flist = [] for word in words: self.flist += glob.glob(word) if len(self.flist) == 0 and len(list) == 1: raise ValueError("no dump file specified") if len(list) == 1: self.increment = 0 self.read_all() else: self.increment = 1 self.nextfile = 0 self.eof = 0 # -------------------------------------------------------------------- def __repr__(self): times = self.time(); ntimes = len(times) lastime = times[-1]; fields = self.names; print("Dump file: %s\ncontains %d frames (tend=%0.4g)\nwith fields" % \ (self.flist[0],ntimes,lastime) ) for k in sorted(fields,key=fields.get,reverse=False): print("\t%02d: %s" % (fields[k],k) ) ret = 'LAMMPS dump object with %d properties and %d frames (tend=%0.4g, - source="%s"' % \ (len(fields),ntimes,lastime,self.flist[0]) return ret # -------------------------------------------------------------------- def read_all(self): # read all snapshots from each file # test for gzipped files for file in self.flist: if file[-3:] == ".gz": f = popen("%s -c %s" % (PIZZA_GUNZIP, file), "r") else: f = open(file) snap = self.read_snapshot(f) while snap: self.snaps.append(snap) print(snap.time, file=sys.stdout, flush=True, end=" ") snap = self.read_snapshot(f) f.close() print # sort entries by timestep, cull duplicates self.snaps.sort() # self.snaps.sort(self.compare_time) #%% to be fixed in the future (OV) self.cull() self.nsnaps = len(self.snaps) print("read %d snapshots" % (self.nsnaps)) # select all timesteps and atoms self.tselect.all() # print column assignments if len(self.names): print("assigned columns:", ",".join(list(self.names.keys()))) else: print("no column assignments made") # if snapshots are scaled, unscale them if ( (not "x" in self.names) or (not "y" in self.names) or (not "z" in self.names) ): print("dump scaling status is unknown") elif self.nsnaps > 0: if self.scale_original == 1: self.unscale() elif self.scale_original == 0: print("dump is already unscaled") else: print("dump scaling status is unknown") # -------------------------------------------------------------------- # read next snapshot from list of files def next(self): if not self.increment: raise ValueError("cannot read incrementally") # read next snapshot in current file using eof as pointer # if fail, try next file # if new snapshot time stamp already exists, read next snapshot while 1: f = open(self.flist[self.nextfile], "rb") f.seek(self.eof) snap = self.read_snapshot(f) if not snap: self.nextfile += 1 if self.nextfile == len(self.flist): return -1 f.close() self.eof = 0 continue self.eof = f.tell() f.close() try: self.findtime(snap.time) continue except: break # select the new snapshot with all its atoms self.snaps.append(snap) snap = self.snaps[self.nsnaps] snap.tselect = 1 snap.nselect = snap.natoms for i in range(snap.natoms): snap.aselect[i] = True self.nsnaps += 1 self.nselect += 1 return snap.time # -------------------------------------------------------------------- # read a single snapshot from file f # return snapshot or 0 if failed # for first snapshot only: # assign column names (file must be self-describing) # set scale_original to 0/1/-1 for unscaled/scaled/unknown # convert xs,xu to x in names def read_snapshot(self, f): """ low-level method to read a snapshot from a file identifier """ # expand the list of keywords if needed (INRAE\Olivier Vitrac) # "keyname": ["name in snap","type"] itemkeywords = {"TIME": ["realtime","float"], "TIMESTEP": ["time","int"], "NUMBER OF ATOMS": ["natoms","int"]} try: snap = Snap() # read and guess the first keywords based on itemkeywords found = True while found: item = f.readline() varitem = item.split("ITEM:")[1].strip() found = varitem in itemkeywords if found: tmp = f.readline().split()[0] # just grab 1st field if itemkeywords[varitem][1]=="int": valitem = int(tmp) else: valitem = float(tmp) setattr(snap,itemkeywords[varitem][0],valitem) # prefetch snap.aselect = np.zeros(snap.natoms,dtype=bool) # we assume that the next item is BOX BOUNDS (pp ff pp) words = item.split("BOUNDS ") if len(words) == 1: snap.boxstr = "" else: snap.boxstr = words[1].strip() if "xy" in snap.boxstr: snap.triclinic = 1 else: snap.triclinic = 0 words = f.readline().split() if len(words) == 2: snap.xlo, snap.xhi, snap.xy = float(words[0]), float(words[1]), 0.0 else: snap.xlo, snap.xhi, snap.xy = ( float(words[0]), float(words[1]), float(words[2]), ) words = f.readline().split() if len(words) == 2: snap.ylo, snap.yhi, snap.xz = float(words[0]), float(words[1]), 0.0 else: snap.ylo, snap.yhi, snap.xz = ( float(words[0]), float(words[1]), float(words[2]), ) words = f.readline().split() if len(words) == 2: snap.zlo, snap.zhi, snap.yz = float(words[0]), float(words[1]), 0.0 else: snap.zlo, snap.zhi, snap.yz = ( float(words[0]), float(words[1]), float(words[2]), ) item = f.readline() if len(self.names) == 0: self.scale_original = -1 xflag = yflag = zflag = -1 words = item.split()[2:] if len(words): for i in range(len(words)): if words[i] == "x" or words[i] == "xu": xflag = 0 self.names["x"] = i elif words[i] == "xs" or words[i] == "xsu": xflag = 1 self.names["x"] = i elif words[i] == "y" or words[i] == "yu": yflag = 0 self.names["y"] = i elif words[i] == "ys" or words[i] == "ysu": yflag = 1 self.names["y"] = i elif words[i] == "z" or words[i] == "zu": zflag = 0 self.names["z"] = i elif words[i] == "zs" or words[i] == "zsu": zflag = 1 self.names["z"] = i else: self.names[words[i]] = i if xflag == 0 and yflag == 0 and zflag == 0: self.scale_original = 0 if xflag == 1 and yflag == 1 and zflag == 1: self.scale_original = 1 if snap.natoms: words = f.readline().split() ncol = len(words) for i in range(1, snap.natoms): words += f.readline().split() floats = list(map(float, words)) if oldnumeric: atoms = np.zeros((snap.natoms, ncol), np.float64) else: atoms = np.zeros((snap.natoms, ncol), np.float64) start = 0 stop = ncol for i in range(snap.natoms): atoms[i] = floats[start:stop] start = stop stop += ncol else: atoms = None snap.atoms = atoms return snap except: return 0 # -------------------------------------------------------------------- # map atom column names def map(self, *pairs): if len(pairs) % 2 != 0: raise ValueError("dump map() requires pairs of mappings") for i in range(0, len(pairs), 2): j = i + 1 self.names[pairs[j]] = pairs[i] - 1 # -------------------------------------------------------------------- # delete unselected snapshots def delete(self): ndel = i = 0 while i < self.nsnaps: if not self.snaps[i].tselect: del self.snaps[i] self.nsnaps -= 1 ndel += 1 else: i += 1 print("%d snapshots deleted" % ndel) print("%d snapshots remaining" % self.nsnaps) # -------------------------------------------------------------------- # scale coords to 0-1 for all snapshots or just one # use 6 params as h-matrix to treat orthongonal or triclinic boxes def scale(self, *list): if len(list) == 0: print("Scaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.scale_one(snap, x, y, z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.scale_one(self.snaps[i], x, y, z) # -------------------------------------------------------------------- def scale_one(self, snap, x, y, z): if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0: xprdinv = 1.0 / (snap.xhi - snap.xlo) yprdinv = 1.0 / (snap.yhi - snap.ylo) zprdinv = 1.0 / (snap.zhi - snap.zlo) atoms = snap.atoms if atoms != None: atoms[:, x] = (atoms[:, x] - snap.xlo) * xprdinv atoms[:, y] = (atoms[:, y] - snap.ylo) * yprdinv atoms[:, z] = (atoms[:, z] - snap.zlo) * zprdinv else: xlo_bound = snap.xlo xhi_bound = snap.xhi ylo_bound = snap.ylo yhi_bound = snap.yhi zlo_bound = snap.zlo zhi_bound = snap.zhi xy = snap.xy xz = snap.xz yz = snap.yz xlo = xlo_bound - min((0.0, xy, xz, xy + xz)) xhi = xhi_bound - max((0.0, xy, xz, xy + xz)) ylo = ylo_bound - min((0.0, yz)) yhi = yhi_bound - max((0.0, yz)) zlo = zlo_bound zhi = zhi_bound h0 = xhi - xlo h1 = yhi - ylo h2 = zhi - zlo h3 = yz h4 = xz h5 = xy h0inv = 1.0 / h0 h1inv = 1.0 / h1 h2inv = 1.0 / h2 h3inv = yz / (h1 * h2) h4inv = (h3 * h5 - h1 * h4) / (h0 * h1 * h2) h5inv = xy / (h0 * h1) atoms = snap.atoms if atoms != None: atoms[:, x] = ( (atoms[:, x] - snap.xlo) * h0inv + (atoms[:, y] - snap.ylo) * h5inv + (atoms[:, z] - snap.zlo) * h4inv ) atoms[:, y] = (atoms[:, y] - snap.ylo) * h1inv + ( atoms[:, z] - snap.zlo ) * h3inv atoms[:, z] = (atoms[:, z] - snap.zlo) * h2inv # -------------------------------------------------------------------- # unscale coords from 0-1 to box size for all snapshots or just one # use 6 params as h-matrix to treat orthongonal or triclinic boxes def unscale(self, *list): if len(list) == 0: print("Unscaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.unscale_one(snap, x, y, z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.unscale_one(self.snaps[i], x, y, z) # -------------------------------------------------------------------- def unscale_one(self, snap, x, y, z): if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms if atoms != None: atoms[:, x] = snap.xlo + atoms[:, x] * xprd atoms[:, y] = snap.ylo + atoms[:, y] * yprd atoms[:, z] = snap.zlo + atoms[:, z] * zprd else: xlo_bound = snap.xlo xhi_bound = snap.xhi ylo_bound = snap.ylo yhi_bound = snap.yhi zlo_bound = snap.zlo zhi_bound = snap.zhi xy = snap.xy xz = snap.xz yz = snap.yz xlo = xlo_bound - min((0.0, xy, xz, xy + xz)) xhi = xhi_bound - max((0.0, xy, xz, xy + xz)) ylo = ylo_bound - min((0.0, yz)) yhi = yhi_bound - max((0.0, yz)) zlo = zlo_bound zhi = zhi_bound h0 = xhi - xlo h1 = yhi - ylo h2 = zhi - zlo h3 = yz h4 = xz h5 = xy atoms = snap.atoms if atoms != None: atoms[:, x] = ( snap.xlo + atoms[:, x] * h0 + atoms[:, y] * h5 + atoms[:, z] * h4 ) atoms[:, y] = snap.ylo + atoms[:, y] * h1 + atoms[:, z] * h3 atoms[:, z] = snap.zlo + atoms[:, z] * h2 # -------------------------------------------------------------------- # wrap coords from outside box to inside def wrap(self): print("Wrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:, x] -= atoms[:, ix] * xprd atoms[:, y] -= atoms[:, iy] * yprd atoms[:, z] -= atoms[:, iz] * zprd # -------------------------------------------------------------------- # unwrap coords from inside box to outside def unwrap(self): print("Unwrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:, x] += atoms[:, ix] * xprd atoms[:, y] += atoms[:, iy] * yprd atoms[:, z] += atoms[:, iz] * zprd # -------------------------------------------------------------------- # wrap coords to same image as atom ID stored in "other" column # if dynamic extra lines or triangles defined, owrap them as well def owrap(self, other): print("Wrapping to other ...") id = self.names["id"] x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] iother = self.names[other] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms ids = {} for i in range(snap.natoms): ids[atoms[i][id]] = i for i in range(snap.natoms): j = ids[atoms[i][iother]] atoms[i][x] += (atoms[i][ix] - atoms[j][ix]) * xprd atoms[i][y] += (atoms[i][iy] - atoms[j][iy]) * yprd atoms[i][z] += (atoms[i][iz] - atoms[j][iz]) * zprd # should bonds also be owrapped ? if self.lineflag == 2 or self.triflag == 2: self.objextra.owrap( snap.time, xprd, yprd, zprd, ids, atoms, iother, ix, iy, iz ) # -------------------------------------------------------------------- # convert column names assignment to a string, in column order def names2str(self): # <-- Python 2.x --> # pairs = self.names.items() # values = self.names.values() # ncol = len(pairs) # str = "" # for i in range(ncol): # if i in values: str += pairs[values.index(i)][0] + ' ' # <-- Python 3.x --> str = "" for k in sorted(self.names, key=self.names.get, reverse=False): str += k + " " return str # -------------------------------------------------------------------- # sort atoms by atom ID in all selected timesteps by default # if arg = string, sort all steps by that column # if arg = numeric, sort atoms in single step def sort(self, *listarg): if len(listarg) == 0: print("Sorting selected snapshots ...") id = self.names["id"] for snap in self.snaps: if snap.tselect: self.sort_one(snap, id) elif type(listarg[0]) is types.StringType: print("Sorting selected snapshots by %s ..." % listarg[0]) id = self.names[listarg[0]] for snap in self.snaps: if snap.tselect: self.sort_one(snap, id) else: i = self.findtime(listarg[0]) id = self.names["id"] self.sort_one(self.snaps[i], id) # -------------------------------------------------------------------- # sort a single snapshot by ID column def sort_one(self, snap, id): atoms = snap.atoms ids = atoms[:, id] ordering = np.argsort(ids) for i in range(len(atoms[0])): atoms[:, i] = np.take(atoms[:, i], ordering) # -------------------------------------------------------------------- # write a single dump file from current selection def write(self, file, header=1, append=0): if len(self.snaps): namestr = self.names2str() if not append: f = open(file, "w") else: f = open(file, "a") if "id" in self.names: id = self.names["id"] else: id = -1 if "type" in self.names: type = self.names["type"] else: type = -1 for snap in self.snaps: if not snap.tselect: continue print(snap.time, file=sys.stdout, flush=True) if header: print("ITEM: TIMESTEP", file=f) print(snap.time, file=f) print("ITEM: NUMBER OF ATOMS", file=f) print(snap.nselect, file=f) if snap.boxstr: print("ITEM: BOX BOUNDS", snap.boxstr, file=f) else: print("ITEM: BOX BOUNDS", file=f) if snap.triclinic: print(snap.xlo, snap.xhi, snap.xy, file=f) print(snap.ylo, snap.yhi, snap.xz, file=f) print(snap.zlo, snap.zhi, snap.yz, file=f) else: print(snap.xlo, snap.xhi, file=f) print(snap.ylo, snap.yhi, file=f) print(snap.zlo, snap.zhi, file=f) print("ITEM: ATOMS", namestr, file=f) atoms = snap.atoms nvalues = len(atoms[0]) for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if j == id or j == type: line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line, file=f) f.close() print("\n%d snapshots" % self.nselect) # -------------------------------------------------------------------- # write one dump file per snapshot from current selection def scatter(self, root): if len(self.snaps): namestr = self.names2str() for snap in self.snaps: if not snap.tselect: continue print(snap.time, file=sys.stdout, flush=True) file = root + "." + str(snap.time) f = open(file, "w") print("ITEM: TIMESTEP", file=f) print(snap.time, file=f) print("ITEM: NUMBER OF ATOMS", file=f) print(snap.nselect, file=f) if snap.boxstr: print("ITEM: BOX BOUNDS", snap.boxstr, file=f) else: print("ITEM: BOX BOUNDS", file=f) if snap.triclinic: print(snap.xlo, snap.xhi, snap.xy, file=f) print(snap.ylo, snap.yhi, snap.xz, file=f) print(snap.zlo, snap.zhi, snap.yz, file=f) else: print(snap.xlo, snap.xhi, file=f) print(snap.ylo, snap.yhi, file=f) print(snap.zlo, snap.zhi, file=f) print("ITEM: ATOMS", namestr, file=f) atoms = snap.atoms nvalues = len(atoms[0]) for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if j < 2: line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line, file=f) f.close() print("\n%d snapshots" % self.nselect) # -------------------------------------------------------------------- # find min/max across all selected snapshots/atoms for a particular column def minmax(self, colname): icol = self.names[colname] min = 1.0e20 max = -min for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] < min: min = atoms[i][icol] if atoms[i][icol] > max: max = atoms[i][icol] return (min, max) # -------------------------------------------------------------------- # set a column value via an equation for all selected snapshots def set(self, eq): print("Setting ...") pattern = "\$\w*" list = re.findall(pattern, eq) lhs = list[0][1:] if not self.names.has_key(lhs): self.newcolumn(lhs) for item in list: name = item[1:] column = self.names[name] insert = "snap.atoms[i][%d]" % (column) eq = eq.replace(item, insert) ceq = compile(eq, "", "single") for snap in self.snaps: if not snap.tselect: continue for i in range(snap.natoms): if snap.aselect[i]: exec(ceq) # -------------------------------------------------------------------- # set a column value via an input vec for all selected snapshots/atoms def setv(self, colname, vec): print("Setting ...") if not self.names.has_key(colname): self.newcolumn(colname) icol = self.names[colname] for snap in self.snaps: if not snap.tselect: continue if snap.nselect != len(vec): raise ValueError("vec length does not match # of selected atoms") atoms = snap.atoms m = 0 for i in range(snap.natoms): if snap.aselect[i]: atoms[i][icol] = vec[m] m += 1 # -------------------------------------------------------------------- # clone value in col across selected timesteps for atoms with same ID def clone(self, nstep, col): istep = self.findtime(nstep) icol = self.names[col] id = self.names["id"] ids = {} for i in range(self.snaps[istep].natoms): ids[self.snaps[istep].atoms[i][id]] = i for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue j = ids[atoms[i][id]] atoms[i][icol] = self.snaps[istep].atoms[j][icol] # -------------------------------------------------------------------- # values in old column are spread as ints from 1-N and assigned to new column def spread(self, old, n, new): iold = self.names[old] if not self.names.has_key(new): self.newcolumn(new) inew = self.names[new] min, max = self.minmax(old) print("min/max = ", min, max) gap = max - min invdelta = n / gap for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue ivalue = int((atoms[i][iold] - min) * invdelta) + 1 if ivalue > n: ivalue = n if ivalue < 1: ivalue = 1 atoms[i][inew] = ivalue # -------------------------------------------------------------------- # return vector of selected snapshot time stamps # time is based on TIMESTEP item # realtime is based on TIME item def time(self): """ timestep as stored: time()""" vec = self.nselect * [0] i = 0 for snap in self.snaps: if not snap.tselect: continue vec[i] = snap.time i += 1 return vec def realtime(self): """ time as simulated: realtime() """ vec = self.nselect * [0.0] i = 0 for snap in self.snaps: if not snap.tselect or not hasattr(snap,"realtime"): continue vec[i] = snap.realtime i += 1 return vec # -------------------------------------------------------------------- # extract vector(s) of values for atom ID n at each selected timestep def atom(self, n, *list): if len(list) == 0: raise ValueError("no columns specified") columns = [] values = [] for name in list: columns.append(self.names[name]) values.append(self.nselect * [0]) ncol = len(columns) id = self.names["id"] m = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if atoms[i][id] == n: break if atoms[i][id] != n: raise ValueError("could not find atom ID in snapshot") for j in range(ncol): values[j][m] = atoms[i][columns[j]] m += 1 if len(list) == 1: return values[0] else: return values # -------------------------------------------------------------------- # extract vector(s) of values for selected atoms at chosen timestep def vecs(self, n, *colname): """ vecs(timeste,columname1,columname2,...) Examples: tab = vecs(timestep,"id","x","y") tab = vecs(timestep,["id","x","y"],"z") X.vecs(X.time()[50],"vx","vy") """ snap = self.snaps[self.findtime(n)] if len(colname) == 0: raise ValueError("no columns specified") if isinstance(colname[0],tuple): colname = list(colname[0]) + list(colname[1:]) if isinstance(colname[0],list): colname = colname[0] + list(colname[1:]) columns = [] values = [] for name in colname: columns.append(self.names[name]) values.append(snap.nselect * [0]) ncol = len(columns) m = 0 for i in range(snap.natoms): if not snap.aselect[i]: continue for j in range(ncol): values[j][m] = snap.atoms[i][columns[j]] m += 1 if len(colname) == 1: return values[0] else: return values # -------------------------------------------------------------------- # add a new column to every snapshot and set value to 0 # set the name of the column to str def newcolumn(self, str): ncol = len(self.snaps[0].atoms[0]) self.map(ncol + 1, str) for snap in self.snaps: # commented because not used # atoms = snap.atoms if oldnumeric: newatoms = np.zeros((snap.natoms, ncol + 1), np.Float) else: newatoms = np.zeros((snap.natoms, ncol + 1), np.float) newatoms[:, 0:ncol] = snap.atoms snap.atoms = newatoms # -------------------------------------------------------------------- # sort snapshots on time stamp def compare_time(self, a, b): if a.time < b.time: return -1 elif a.time > b.time: return 1 else: return 0 # -------------------------------------------------------------------- # delete successive snapshots with duplicate time stamp def cull(self): i = 1 while i < len(self.snaps): if self.snaps[i].time == self.snaps[i - 1].time: del self.snaps[i] else: i += 1 # -------------------------------------------------------------------- # iterate over selected snapshots def iterator(self, flag): start = 0 if flag: start = self.iterate + 1 for i in range(start, self.nsnaps): if self.snaps[i].tselect: self.iterate = i return i, self.snaps[i].time, 1 return 0, 0, -1 # -------------------------------------------------------------------- # return list of atoms to viz for snapshot isnap # if called with flag, then index is timestep, so convert to snapshot index # augment with bonds, tris, lines if extra() was invoked def viz(self, index, flag=0): if not flag: isnap = index else: times = self.time() n = len(times) i = 0 while i < n: if times[i] > index: break i += 1 isnap = i - 1 snap = self.snaps[isnap] time = snap.time box = [snap.xlo, snap.ylo, snap.zlo, snap.xhi, snap.yhi, snap.zhi] id = self.names["id"] type = self.names[self.atype] x = self.names["x"] y = self.names["y"] z = self.names["z"] # create atom list needed by viz from id,type,x,y,z # need Numeric/Numpy mode here atoms = [] for i in range(snap.natoms): if not snap.aselect[i]: continue atom = snap.atoms[i] atoms.append([atom[id], atom[type], atom[x], atom[y], atom[z]]) # create list of bonds from static or dynamic bond list # then generate bond coords from bondlist # alist = dictionary of atom IDs for atoms list # lookup bond atom IDs in alist and grab their coords # try is used since some atoms may be unselected # any bond with unselected atom is not added to bonds # need Numeric/Numpy mode here bonds = [] if self.bondflag: if self.bondflag == 1: bondlist = self.bondlist elif self.bondflag == 2: tmp1, tmp2, tmp3, bondlist, tmp4, tmp5 = self.objextra.viz(time, 1) alist = {} for i in range(len(atoms)): alist[int(atoms[i][0])] = i for bond in bondlist: try: i = alist[bond[2]] j = alist[bond[3]] atom1 = atoms[i] atom2 = atoms[j] bonds.append( [ bond[0], bond[1], atom1[2], atom1[3], atom1[4], atom2[2], atom2[3], atom2[4], atom1[1], atom2[1], ] ) except: continue # create list of tris from static or dynamic tri list # if dynamic, could eliminate tris for unselected atoms tris = [] if self.triflag: if self.triflag == 1: tris = self.trilist elif self.triflag == 2: tmp1, tmp2, tmp3, tmp4, tris, tmp5 = self.objextra.viz(time, 1) # create list of lines from static or dynamic tri list # if dynamic, could eliminate lines for unselected atoms lines = [] if self.lineflag: if self.lineflag == 1: lines = self.linelist elif self.lineflag == 2: tmp1, tmp2, tmp3, tmp4, tmp5, lines = self.objextra.viz(time, 1) return time, box, atoms, bonds, tris, lines # -------------------------------------------------------------------- def findtime(self, n): for i in range(self.nsnaps): if self.snaps[i].time == n: return i raise ValueError("no step %d exists" % n) # -------------------------------------------------------------------- # return maximum box size across all selected snapshots def maxbox(self): xlo = ylo = zlo = None xhi = yhi = zhi = None for snap in self.snaps: if not snap.tselect: continue if xlo == None or snap.xlo < xlo: xlo = snap.xlo if xhi == None or snap.xhi > xhi: xhi = snap.xhi if ylo == None or snap.ylo < ylo: ylo = snap.ylo if yhi == None or snap.yhi > yhi: yhi = snap.yhi if zlo == None or snap.zlo < zlo: zlo = snap.zlo if zhi == None or snap.zhi > zhi: zhi = snap.zhi return [xlo, ylo, zlo, xhi, yhi, zhi] # -------------------------------------------------------------------- # return maximum atom type across all selected snapshots and atoms def maxtype(self): icol = self.names["type"] max = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] > max: max = atoms[i][icol] return int(max) # -------------------------------------------------------------------- # grab bonds/tris/lines from another object # if static, grab once, else store obj to grab dynamically def extra(self, arg): # data object, grab bonds statically if type(arg) is types.InstanceType and ".data" in str(arg.__class__): self.bondflag = 0 try: bondlist = [] bondlines = arg.sections["Bonds"] for line in bondlines: words = line.split() bondlist.append( [int(words[0]), int(words[1]), int(words[2]), int(words[3])] ) if bondlist: self.bondflag = 1 self.bondlist = bondlist except: raise ValueError("could not extract bonds from data object") # cdata object, grab tris and lines statically elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__): self.triflag = self.lineflag = 0 try: tmp, tmp, tmp, tmp, tris, lines = arg.viz(0) if tris: self.triflag = 1 self.trilist = tris if lines: self.lineflag = 1 self.linelist = lines except: raise ValueError("could not extract tris/lines from cdata object") # mdump object, grab tris dynamically elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__): self.triflag = 2 self.objextra = arg # bdump object, grab bonds dynamically elif type(arg) is types.InstanceType and ".bdump" in str(arg.__class__): self.bondflag = 2 self.objextra = arg # ldump object, grab lines dynamically elif type(arg) is types.InstanceType and ".ldump" in str(arg.__class__): self.lineflag = 2 self.objextra = arg # tdump object, grab tris dynamically elif type(arg) is types.InstanceType and ".tdump" in str(arg.__class__): self.triflag = 2 self.objextra = arg else: raise ValueError("unrecognized argument to dump.extra()") # -------------------------------------------------------------------- def compare_atom(self, a, b): if a[0] < b[0]: return -1 elif a[0] > b[0]: return 1 else: return 0 # -------------------------------------------------------------------- def frame(self,iframe): """ simplified class to access properties of a snapshot (INRAE\Olivier Vitrac) """ nframes= len(self.time()); if iframe>=nframes: raise ValueError("the frame index should be ranged between 0 and %d" % nframes) elif iframe<0: iframe = iframe % nframes times = self.time() fields = self.names snap = self.snaps[iframe] frame = Frame() frame.dumpfile = self.flist[0] frame.time = times[iframe] frame.description = {"dumpfile": "dumpobject.flist[0]", "time": "dumpobject.times()[]"} for k in sorted(fields,key=fields.get,reverse=False): kvalid = k # valid key name for rep in ["[","]","#","~","-","_","(",")",",",".",";"]: kvalid = kvalid.replace(rep,"") frame.description[kvalid] = k frame.__dict__[kvalid] = snap.atoms[:,fields[k]] return frame # -------------------------------------------------------------------- def kind(self,listtypes=None): """ guessed kind of dump file based on column names (possibility to supply a personnalized list) (INRAE\Olivier Vitrac) """ if listtypes==None: listtypes = { 'vxyz': ["id","type","x","y","z","vx","vy","vz"], 'xyz': ["id","type","x","y","z"] } internaltypes = True else: listtypes = {"usertype":listtypes} internaltypes = False for t in listtypes: if len(listtypes[t])==0: ismatching = False else: ismatching = True for field in listtypes[t]: ismatching = ismatching and field in self.names if ismatching: break if ismatching: if internaltypes: return t else: return True else: if internaltypes: return None else: return False # -------------------------------------------------------------------- @property def type(self): """ type of dump file defined as a hash of column names """ return hash(self.names2str()) # -------------------------------------------------------------------- def __add__(self,o): """ merge dump objects of the same kind/type """ if not isinstance(o,dump): raise ValueError("the second operand is not a dump object") elif self.type != o.type: raise ValueError("the dumps are not of the same type") twofiles = self.flist[0] + " " + o.flist[0] return dump(twofiles) # --------------------------------------------------------------------
Instance variables
var type
-
type of dump file defined as a hash of column names
Expand source code
@property def type(self): """ type of dump file defined as a hash of column names """ return hash(self.names2str())
Methods
def atom(self, n, *list)
-
Expand source code
def atom(self, n, *list): if len(list) == 0: raise ValueError("no columns specified") columns = [] values = [] for name in list: columns.append(self.names[name]) values.append(self.nselect * [0]) ncol = len(columns) id = self.names["id"] m = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if atoms[i][id] == n: break if atoms[i][id] != n: raise ValueError("could not find atom ID in snapshot") for j in range(ncol): values[j][m] = atoms[i][columns[j]] m += 1 if len(list) == 1: return values[0] else: return values
def clone(self, nstep, col)
-
Expand source code
def clone(self, nstep, col): istep = self.findtime(nstep) icol = self.names[col] id = self.names["id"] ids = {} for i in range(self.snaps[istep].natoms): ids[self.snaps[istep].atoms[i][id]] = i for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue j = ids[atoms[i][id]] atoms[i][icol] = self.snaps[istep].atoms[j][icol]
def compare_atom(self, a, b)
-
Expand source code
def compare_atom(self, a, b): if a[0] < b[0]: return -1 elif a[0] > b[0]: return 1 else: return 0
def compare_time(self, a, b)
-
Expand source code
def compare_time(self, a, b): if a.time < b.time: return -1 elif a.time > b.time: return 1 else: return 0
def cull(self)
-
Expand source code
def cull(self): i = 1 while i < len(self.snaps): if self.snaps[i].time == self.snaps[i - 1].time: del self.snaps[i] else: i += 1
def delete(self)
-
Expand source code
def delete(self): ndel = i = 0 while i < self.nsnaps: if not self.snaps[i].tselect: del self.snaps[i] self.nsnaps -= 1 ndel += 1 else: i += 1 print("%d snapshots deleted" % ndel) print("%d snapshots remaining" % self.nsnaps)
def extra(self, arg)
-
Expand source code
def extra(self, arg): # data object, grab bonds statically if type(arg) is types.InstanceType and ".data" in str(arg.__class__): self.bondflag = 0 try: bondlist = [] bondlines = arg.sections["Bonds"] for line in bondlines: words = line.split() bondlist.append( [int(words[0]), int(words[1]), int(words[2]), int(words[3])] ) if bondlist: self.bondflag = 1 self.bondlist = bondlist except: raise ValueError("could not extract bonds from data object") # cdata object, grab tris and lines statically elif type(arg) is types.InstanceType and ".cdata" in str(arg.__class__): self.triflag = self.lineflag = 0 try: tmp, tmp, tmp, tmp, tris, lines = arg.viz(0) if tris: self.triflag = 1 self.trilist = tris if lines: self.lineflag = 1 self.linelist = lines except: raise ValueError("could not extract tris/lines from cdata object") # mdump object, grab tris dynamically elif type(arg) is types.InstanceType and ".mdump" in str(arg.__class__): self.triflag = 2 self.objextra = arg # bdump object, grab bonds dynamically elif type(arg) is types.InstanceType and ".bdump" in str(arg.__class__): self.bondflag = 2 self.objextra = arg # ldump object, grab lines dynamically elif type(arg) is types.InstanceType and ".ldump" in str(arg.__class__): self.lineflag = 2 self.objextra = arg # tdump object, grab tris dynamically elif type(arg) is types.InstanceType and ".tdump" in str(arg.__class__): self.triflag = 2 self.objextra = arg else: raise ValueError("unrecognized argument to dump.extra()")
def findtime(self, n)
-
Expand source code
def findtime(self, n): for i in range(self.nsnaps): if self.snaps[i].time == n: return i raise ValueError("no step %d exists" % n)
def frame(self, iframe)
-
simplified class to access properties of a snapshot (INRAE\Olivier Vitrac)
Expand source code
def frame(self,iframe): """ simplified class to access properties of a snapshot (INRAE\Olivier Vitrac) """ nframes= len(self.time()); if iframe>=nframes: raise ValueError("the frame index should be ranged between 0 and %d" % nframes) elif iframe<0: iframe = iframe % nframes times = self.time() fields = self.names snap = self.snaps[iframe] frame = Frame() frame.dumpfile = self.flist[0] frame.time = times[iframe] frame.description = {"dumpfile": "dumpobject.flist[0]", "time": "dumpobject.times()[]"} for k in sorted(fields,key=fields.get,reverse=False): kvalid = k # valid key name for rep in ["[","]","#","~","-","_","(",")",",",".",";"]: kvalid = kvalid.replace(rep,"") frame.description[kvalid] = k frame.__dict__[kvalid] = snap.atoms[:,fields[k]] return frame
def iterator(self, flag)
-
Expand source code
def iterator(self, flag): start = 0 if flag: start = self.iterate + 1 for i in range(start, self.nsnaps): if self.snaps[i].tselect: self.iterate = i return i, self.snaps[i].time, 1 return 0, 0, -1
def kind(self, listtypes=None)
-
guessed kind of dump file based on column names (possibility to supply a personnalized list) (INRAE\Olivier Vitrac)
Expand source code
def kind(self,listtypes=None): """ guessed kind of dump file based on column names (possibility to supply a personnalized list) (INRAE\Olivier Vitrac) """ if listtypes==None: listtypes = { 'vxyz': ["id","type","x","y","z","vx","vy","vz"], 'xyz': ["id","type","x","y","z"] } internaltypes = True else: listtypes = {"usertype":listtypes} internaltypes = False for t in listtypes: if len(listtypes[t])==0: ismatching = False else: ismatching = True for field in listtypes[t]: ismatching = ismatching and field in self.names if ismatching: break if ismatching: if internaltypes: return t else: return True else: if internaltypes: return None else: return False
def map(self, *pairs)
-
Expand source code
def map(self, *pairs): if len(pairs) % 2 != 0: raise ValueError("dump map() requires pairs of mappings") for i in range(0, len(pairs), 2): j = i + 1 self.names[pairs[j]] = pairs[i] - 1
def maxbox(self)
-
Expand source code
def maxbox(self): xlo = ylo = zlo = None xhi = yhi = zhi = None for snap in self.snaps: if not snap.tselect: continue if xlo == None or snap.xlo < xlo: xlo = snap.xlo if xhi == None or snap.xhi > xhi: xhi = snap.xhi if ylo == None or snap.ylo < ylo: ylo = snap.ylo if yhi == None or snap.yhi > yhi: yhi = snap.yhi if zlo == None or snap.zlo < zlo: zlo = snap.zlo if zhi == None or snap.zhi > zhi: zhi = snap.zhi return [xlo, ylo, zlo, xhi, yhi, zhi]
def maxtype(self)
-
Expand source code
def maxtype(self): icol = self.names["type"] max = 0 for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] > max: max = atoms[i][icol] return int(max)
def minmax(self, colname)
-
Expand source code
def minmax(self, colname): icol = self.names[colname] min = 1.0e20 max = -min for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue if atoms[i][icol] < min: min = atoms[i][icol] if atoms[i][icol] > max: max = atoms[i][icol] return (min, max)
def names2str(self)
-
Expand source code
def names2str(self): # <-- Python 2.x --> # pairs = self.names.items() # values = self.names.values() # ncol = len(pairs) # str = "" # for i in range(ncol): # if i in values: str += pairs[values.index(i)][0] + ' ' # <-- Python 3.x --> str = "" for k in sorted(self.names, key=self.names.get, reverse=False): str += k + " " return str
def newcolumn(self, str)
-
Expand source code
def newcolumn(self, str): ncol = len(self.snaps[0].atoms[0]) self.map(ncol + 1, str) for snap in self.snaps: # commented because not used # atoms = snap.atoms if oldnumeric: newatoms = np.zeros((snap.natoms, ncol + 1), np.Float) else: newatoms = np.zeros((snap.natoms, ncol + 1), np.float) newatoms[:, 0:ncol] = snap.atoms snap.atoms = newatoms
def next(self)
-
Expand source code
def next(self): if not self.increment: raise ValueError("cannot read incrementally") # read next snapshot in current file using eof as pointer # if fail, try next file # if new snapshot time stamp already exists, read next snapshot while 1: f = open(self.flist[self.nextfile], "rb") f.seek(self.eof) snap = self.read_snapshot(f) if not snap: self.nextfile += 1 if self.nextfile == len(self.flist): return -1 f.close() self.eof = 0 continue self.eof = f.tell() f.close() try: self.findtime(snap.time) continue except: break # select the new snapshot with all its atoms self.snaps.append(snap) snap = self.snaps[self.nsnaps] snap.tselect = 1 snap.nselect = snap.natoms for i in range(snap.natoms): snap.aselect[i] = True self.nsnaps += 1 self.nselect += 1 return snap.time
def owrap(self, other)
-
Expand source code
def owrap(self, other): print("Wrapping to other ...") id = self.names["id"] x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] iother = self.names[other] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms ids = {} for i in range(snap.natoms): ids[atoms[i][id]] = i for i in range(snap.natoms): j = ids[atoms[i][iother]] atoms[i][x] += (atoms[i][ix] - atoms[j][ix]) * xprd atoms[i][y] += (atoms[i][iy] - atoms[j][iy]) * yprd atoms[i][z] += (atoms[i][iz] - atoms[j][iz]) * zprd # should bonds also be owrapped ? if self.lineflag == 2 or self.triflag == 2: self.objextra.owrap( snap.time, xprd, yprd, zprd, ids, atoms, iother, ix, iy, iz )
def read_all(self)
-
Expand source code
def read_all(self): # read all snapshots from each file # test for gzipped files for file in self.flist: if file[-3:] == ".gz": f = popen("%s -c %s" % (PIZZA_GUNZIP, file), "r") else: f = open(file) snap = self.read_snapshot(f) while snap: self.snaps.append(snap) print(snap.time, file=sys.stdout, flush=True, end=" ") snap = self.read_snapshot(f) f.close() print # sort entries by timestep, cull duplicates self.snaps.sort() # self.snaps.sort(self.compare_time) #%% to be fixed in the future (OV) self.cull() self.nsnaps = len(self.snaps) print("read %d snapshots" % (self.nsnaps)) # select all timesteps and atoms self.tselect.all() # print column assignments if len(self.names): print("assigned columns:", ",".join(list(self.names.keys()))) else: print("no column assignments made") # if snapshots are scaled, unscale them if ( (not "x" in self.names) or (not "y" in self.names) or (not "z" in self.names) ): print("dump scaling status is unknown") elif self.nsnaps > 0: if self.scale_original == 1: self.unscale() elif self.scale_original == 0: print("dump is already unscaled") else: print("dump scaling status is unknown")
def read_snapshot(self, f)
-
low-level method to read a snapshot from a file identifier
Expand source code
def read_snapshot(self, f): """ low-level method to read a snapshot from a file identifier """ # expand the list of keywords if needed (INRAE\Olivier Vitrac) # "keyname": ["name in snap","type"] itemkeywords = {"TIME": ["realtime","float"], "TIMESTEP": ["time","int"], "NUMBER OF ATOMS": ["natoms","int"]} try: snap = Snap() # read and guess the first keywords based on itemkeywords found = True while found: item = f.readline() varitem = item.split("ITEM:")[1].strip() found = varitem in itemkeywords if found: tmp = f.readline().split()[0] # just grab 1st field if itemkeywords[varitem][1]=="int": valitem = int(tmp) else: valitem = float(tmp) setattr(snap,itemkeywords[varitem][0],valitem) # prefetch snap.aselect = np.zeros(snap.natoms,dtype=bool) # we assume that the next item is BOX BOUNDS (pp ff pp) words = item.split("BOUNDS ") if len(words) == 1: snap.boxstr = "" else: snap.boxstr = words[1].strip() if "xy" in snap.boxstr: snap.triclinic = 1 else: snap.triclinic = 0 words = f.readline().split() if len(words) == 2: snap.xlo, snap.xhi, snap.xy = float(words[0]), float(words[1]), 0.0 else: snap.xlo, snap.xhi, snap.xy = ( float(words[0]), float(words[1]), float(words[2]), ) words = f.readline().split() if len(words) == 2: snap.ylo, snap.yhi, snap.xz = float(words[0]), float(words[1]), 0.0 else: snap.ylo, snap.yhi, snap.xz = ( float(words[0]), float(words[1]), float(words[2]), ) words = f.readline().split() if len(words) == 2: snap.zlo, snap.zhi, snap.yz = float(words[0]), float(words[1]), 0.0 else: snap.zlo, snap.zhi, snap.yz = ( float(words[0]), float(words[1]), float(words[2]), ) item = f.readline() if len(self.names) == 0: self.scale_original = -1 xflag = yflag = zflag = -1 words = item.split()[2:] if len(words): for i in range(len(words)): if words[i] == "x" or words[i] == "xu": xflag = 0 self.names["x"] = i elif words[i] == "xs" or words[i] == "xsu": xflag = 1 self.names["x"] = i elif words[i] == "y" or words[i] == "yu": yflag = 0 self.names["y"] = i elif words[i] == "ys" or words[i] == "ysu": yflag = 1 self.names["y"] = i elif words[i] == "z" or words[i] == "zu": zflag = 0 self.names["z"] = i elif words[i] == "zs" or words[i] == "zsu": zflag = 1 self.names["z"] = i else: self.names[words[i]] = i if xflag == 0 and yflag == 0 and zflag == 0: self.scale_original = 0 if xflag == 1 and yflag == 1 and zflag == 1: self.scale_original = 1 if snap.natoms: words = f.readline().split() ncol = len(words) for i in range(1, snap.natoms): words += f.readline().split() floats = list(map(float, words)) if oldnumeric: atoms = np.zeros((snap.natoms, ncol), np.float64) else: atoms = np.zeros((snap.natoms, ncol), np.float64) start = 0 stop = ncol for i in range(snap.natoms): atoms[i] = floats[start:stop] start = stop stop += ncol else: atoms = None snap.atoms = atoms return snap except: return 0
def realtime(self)
-
time as simulated: realtime()
Expand source code
def realtime(self): """ time as simulated: realtime() """ vec = self.nselect * [0.0] i = 0 for snap in self.snaps: if not snap.tselect or not hasattr(snap,"realtime"): continue vec[i] = snap.realtime i += 1 return vec
def scale(self, *list)
-
Expand source code
def scale(self, *list): if len(list) == 0: print("Scaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.scale_one(snap, x, y, z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.scale_one(self.snaps[i], x, y, z)
def scale_one(self, snap, x, y, z)
-
Expand source code
def scale_one(self, snap, x, y, z): if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0: xprdinv = 1.0 / (snap.xhi - snap.xlo) yprdinv = 1.0 / (snap.yhi - snap.ylo) zprdinv = 1.0 / (snap.zhi - snap.zlo) atoms = snap.atoms if atoms != None: atoms[:, x] = (atoms[:, x] - snap.xlo) * xprdinv atoms[:, y] = (atoms[:, y] - snap.ylo) * yprdinv atoms[:, z] = (atoms[:, z] - snap.zlo) * zprdinv else: xlo_bound = snap.xlo xhi_bound = snap.xhi ylo_bound = snap.ylo yhi_bound = snap.yhi zlo_bound = snap.zlo zhi_bound = snap.zhi xy = snap.xy xz = snap.xz yz = snap.yz xlo = xlo_bound - min((0.0, xy, xz, xy + xz)) xhi = xhi_bound - max((0.0, xy, xz, xy + xz)) ylo = ylo_bound - min((0.0, yz)) yhi = yhi_bound - max((0.0, yz)) zlo = zlo_bound zhi = zhi_bound h0 = xhi - xlo h1 = yhi - ylo h2 = zhi - zlo h3 = yz h4 = xz h5 = xy h0inv = 1.0 / h0 h1inv = 1.0 / h1 h2inv = 1.0 / h2 h3inv = yz / (h1 * h2) h4inv = (h3 * h5 - h1 * h4) / (h0 * h1 * h2) h5inv = xy / (h0 * h1) atoms = snap.atoms if atoms != None: atoms[:, x] = ( (atoms[:, x] - snap.xlo) * h0inv + (atoms[:, y] - snap.ylo) * h5inv + (atoms[:, z] - snap.zlo) * h4inv ) atoms[:, y] = (atoms[:, y] - snap.ylo) * h1inv + ( atoms[:, z] - snap.zlo ) * h3inv atoms[:, z] = (atoms[:, z] - snap.zlo) * h2inv
def scatter(self, root)
-
Expand source code
def scatter(self, root): if len(self.snaps): namestr = self.names2str() for snap in self.snaps: if not snap.tselect: continue print(snap.time, file=sys.stdout, flush=True) file = root + "." + str(snap.time) f = open(file, "w") print("ITEM: TIMESTEP", file=f) print(snap.time, file=f) print("ITEM: NUMBER OF ATOMS", file=f) print(snap.nselect, file=f) if snap.boxstr: print("ITEM: BOX BOUNDS", snap.boxstr, file=f) else: print("ITEM: BOX BOUNDS", file=f) if snap.triclinic: print(snap.xlo, snap.xhi, snap.xy, file=f) print(snap.ylo, snap.yhi, snap.xz, file=f) print(snap.zlo, snap.zhi, snap.yz, file=f) else: print(snap.xlo, snap.xhi, file=f) print(snap.ylo, snap.yhi, file=f) print(snap.zlo, snap.zhi, file=f) print("ITEM: ATOMS", namestr, file=f) atoms = snap.atoms nvalues = len(atoms[0]) for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if j < 2: line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line, file=f) f.close() print("\n%d snapshots" % self.nselect)
def set(self, eq)
-
Expand source code
def set(self, eq): print("Setting ...") pattern = "\$\w*" list = re.findall(pattern, eq) lhs = list[0][1:] if not self.names.has_key(lhs): self.newcolumn(lhs) for item in list: name = item[1:] column = self.names[name] insert = "snap.atoms[i][%d]" % (column) eq = eq.replace(item, insert) ceq = compile(eq, "", "single") for snap in self.snaps: if not snap.tselect: continue for i in range(snap.natoms): if snap.aselect[i]: exec(ceq)
def setv(self, colname, vec)
-
Expand source code
def setv(self, colname, vec): print("Setting ...") if not self.names.has_key(colname): self.newcolumn(colname) icol = self.names[colname] for snap in self.snaps: if not snap.tselect: continue if snap.nselect != len(vec): raise ValueError("vec length does not match # of selected atoms") atoms = snap.atoms m = 0 for i in range(snap.natoms): if snap.aselect[i]: atoms[i][icol] = vec[m] m += 1
def sort(self, *listarg)
-
Expand source code
def sort(self, *listarg): if len(listarg) == 0: print("Sorting selected snapshots ...") id = self.names["id"] for snap in self.snaps: if snap.tselect: self.sort_one(snap, id) elif type(listarg[0]) is types.StringType: print("Sorting selected snapshots by %s ..." % listarg[0]) id = self.names[listarg[0]] for snap in self.snaps: if snap.tselect: self.sort_one(snap, id) else: i = self.findtime(listarg[0]) id = self.names["id"] self.sort_one(self.snaps[i], id)
def sort_one(self, snap, id)
-
Expand source code
def sort_one(self, snap, id): atoms = snap.atoms ids = atoms[:, id] ordering = np.argsort(ids) for i in range(len(atoms[0])): atoms[:, i] = np.take(atoms[:, i], ordering)
def spread(self, old, n, new)
-
Expand source code
def spread(self, old, n, new): iold = self.names[old] if not self.names.has_key(new): self.newcolumn(new) inew = self.names[new] min, max = self.minmax(old) print("min/max = ", min, max) gap = max - min invdelta = n / gap for snap in self.snaps: if not snap.tselect: continue atoms = snap.atoms for i in range(snap.natoms): if not snap.aselect[i]: continue ivalue = int((atoms[i][iold] - min) * invdelta) + 1 if ivalue > n: ivalue = n if ivalue < 1: ivalue = 1 atoms[i][inew] = ivalue
def time(self)
-
timestep as stored: time()
Expand source code
def time(self): """ timestep as stored: time()""" vec = self.nselect * [0] i = 0 for snap in self.snaps: if not snap.tselect: continue vec[i] = snap.time i += 1 return vec
def unscale(self, *list)
-
Expand source code
def unscale(self, *list): if len(list) == 0: print("Unscaling dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] for snap in self.snaps: self.unscale_one(snap, x, y, z) else: i = self.findtime(list[0]) x = self.names["x"] y = self.names["y"] z = self.names["z"] self.unscale_one(self.snaps[i], x, y, z)
def unscale_one(self, snap, x, y, z)
-
Expand source code
def unscale_one(self, snap, x, y, z): if snap.xy == 0.0 and snap.xz == 0.0 and snap.yz == 0.0: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms if atoms != None: atoms[:, x] = snap.xlo + atoms[:, x] * xprd atoms[:, y] = snap.ylo + atoms[:, y] * yprd atoms[:, z] = snap.zlo + atoms[:, z] * zprd else: xlo_bound = snap.xlo xhi_bound = snap.xhi ylo_bound = snap.ylo yhi_bound = snap.yhi zlo_bound = snap.zlo zhi_bound = snap.zhi xy = snap.xy xz = snap.xz yz = snap.yz xlo = xlo_bound - min((0.0, xy, xz, xy + xz)) xhi = xhi_bound - max((0.0, xy, xz, xy + xz)) ylo = ylo_bound - min((0.0, yz)) yhi = yhi_bound - max((0.0, yz)) zlo = zlo_bound zhi = zhi_bound h0 = xhi - xlo h1 = yhi - ylo h2 = zhi - zlo h3 = yz h4 = xz h5 = xy atoms = snap.atoms if atoms != None: atoms[:, x] = ( snap.xlo + atoms[:, x] * h0 + atoms[:, y] * h5 + atoms[:, z] * h4 ) atoms[:, y] = snap.ylo + atoms[:, y] * h1 + atoms[:, z] * h3 atoms[:, z] = snap.zlo + atoms[:, z] * h2
def unwrap(self)
-
Expand source code
def unwrap(self): print("Unwrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:, x] += atoms[:, ix] * xprd atoms[:, y] += atoms[:, iy] * yprd atoms[:, z] += atoms[:, iz] * zprd
def vecs(self, n, *colname)
-
vecs(timeste,columname1,columname2,…)
Examples
tab = vecs(timestep,"id","x","y") tab = vecs(timestep,["id","x","y"],"z") X.vecs(X.time()[50],"vx","vy")
Expand source code
def vecs(self, n, *colname): """ vecs(timeste,columname1,columname2,...) Examples: tab = vecs(timestep,"id","x","y") tab = vecs(timestep,["id","x","y"],"z") X.vecs(X.time()[50],"vx","vy") """ snap = self.snaps[self.findtime(n)] if len(colname) == 0: raise ValueError("no columns specified") if isinstance(colname[0],tuple): colname = list(colname[0]) + list(colname[1:]) if isinstance(colname[0],list): colname = colname[0] + list(colname[1:]) columns = [] values = [] for name in colname: columns.append(self.names[name]) values.append(snap.nselect * [0]) ncol = len(columns) m = 0 for i in range(snap.natoms): if not snap.aselect[i]: continue for j in range(ncol): values[j][m] = snap.atoms[i][columns[j]] m += 1 if len(colname) == 1: return values[0] else: return values
def viz(self, index, flag=0)
-
Expand source code
def viz(self, index, flag=0): if not flag: isnap = index else: times = self.time() n = len(times) i = 0 while i < n: if times[i] > index: break i += 1 isnap = i - 1 snap = self.snaps[isnap] time = snap.time box = [snap.xlo, snap.ylo, snap.zlo, snap.xhi, snap.yhi, snap.zhi] id = self.names["id"] type = self.names[self.atype] x = self.names["x"] y = self.names["y"] z = self.names["z"] # create atom list needed by viz from id,type,x,y,z # need Numeric/Numpy mode here atoms = [] for i in range(snap.natoms): if not snap.aselect[i]: continue atom = snap.atoms[i] atoms.append([atom[id], atom[type], atom[x], atom[y], atom[z]]) # create list of bonds from static or dynamic bond list # then generate bond coords from bondlist # alist = dictionary of atom IDs for atoms list # lookup bond atom IDs in alist and grab their coords # try is used since some atoms may be unselected # any bond with unselected atom is not added to bonds # need Numeric/Numpy mode here bonds = [] if self.bondflag: if self.bondflag == 1: bondlist = self.bondlist elif self.bondflag == 2: tmp1, tmp2, tmp3, bondlist, tmp4, tmp5 = self.objextra.viz(time, 1) alist = {} for i in range(len(atoms)): alist[int(atoms[i][0])] = i for bond in bondlist: try: i = alist[bond[2]] j = alist[bond[3]] atom1 = atoms[i] atom2 = atoms[j] bonds.append( [ bond[0], bond[1], atom1[2], atom1[3], atom1[4], atom2[2], atom2[3], atom2[4], atom1[1], atom2[1], ] ) except: continue # create list of tris from static or dynamic tri list # if dynamic, could eliminate tris for unselected atoms tris = [] if self.triflag: if self.triflag == 1: tris = self.trilist elif self.triflag == 2: tmp1, tmp2, tmp3, tmp4, tris, tmp5 = self.objextra.viz(time, 1) # create list of lines from static or dynamic tri list # if dynamic, could eliminate lines for unselected atoms lines = [] if self.lineflag: if self.lineflag == 1: lines = self.linelist elif self.lineflag == 2: tmp1, tmp2, tmp3, tmp4, tmp5, lines = self.objextra.viz(time, 1) return time, box, atoms, bonds, tris, lines
def wrap(self)
-
Expand source code
def wrap(self): print("Wrapping dump ...") x = self.names["x"] y = self.names["y"] z = self.names["z"] ix = self.names["ix"] iy = self.names["iy"] iz = self.names["iz"] for snap in self.snaps: xprd = snap.xhi - snap.xlo yprd = snap.yhi - snap.ylo zprd = snap.zhi - snap.zlo atoms = snap.atoms atoms[:, x] -= atoms[:, ix] * xprd atoms[:, y] -= atoms[:, iy] * yprd atoms[:, z] -= atoms[:, iz] * zprd
def write(self, file, header=1, append=0)
-
Expand source code
def write(self, file, header=1, append=0): if len(self.snaps): namestr = self.names2str() if not append: f = open(file, "w") else: f = open(file, "a") if "id" in self.names: id = self.names["id"] else: id = -1 if "type" in self.names: type = self.names["type"] else: type = -1 for snap in self.snaps: if not snap.tselect: continue print(snap.time, file=sys.stdout, flush=True) if header: print("ITEM: TIMESTEP", file=f) print(snap.time, file=f) print("ITEM: NUMBER OF ATOMS", file=f) print(snap.nselect, file=f) if snap.boxstr: print("ITEM: BOX BOUNDS", snap.boxstr, file=f) else: print("ITEM: BOX BOUNDS", file=f) if snap.triclinic: print(snap.xlo, snap.xhi, snap.xy, file=f) print(snap.ylo, snap.yhi, snap.xz, file=f) print(snap.zlo, snap.zhi, snap.yz, file=f) else: print(snap.xlo, snap.xhi, file=f) print(snap.ylo, snap.yhi, file=f) print(snap.zlo, snap.zhi, file=f) print("ITEM: ATOMS", namestr, file=f) atoms = snap.atoms nvalues = len(atoms[0]) for i in range(snap.natoms): if not snap.aselect[i]: continue line = "" for j in range(nvalues): if j == id or j == type: line += str(int(atoms[i][j])) + " " else: line += str(atoms[i][j]) + " " print(line, file=f) f.close() print("\n%d snapshots" % self.nselect)
class tselect (data)
-
Expand source code
class tselect: def __init__(self, data): self.data = data # -------------------------------------------------------------------- def all(self): data = self.data for snap in data.snaps: snap.tselect = 1 data.nselect = len(data.snaps) data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps)) # -------------------------------------------------------------------- def one(self, n): data = self.data for snap in data.snaps: snap.tselect = 0 i = data.findtime(n) data.snaps[i].tselect = 1 data.nselect = 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps)) # -------------------------------------------------------------------- def none(self): data = self.data for snap in data.snaps: snap.tselect = 0 data.nselect = 0 print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps)) # -------------------------------------------------------------------- def skip(self, n): data = self.data count = n - 1 for snap in data.snaps: if not snap.tselect: continue count += 1 if count == n: count = 0 continue snap.tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps)) # -------------------------------------------------------------------- def test(self, teststr): data = self.data snaps = data.snaps # Python 2.x # cmd = "flag = " + teststr.replace("$t","snaps[i].time") # ccmd = compile(cmd,'','single') # Python 3.x evalcmd = teststr.replace("$t", "snaps[i].time") for i in range(data.nsnaps): if not snaps[i].tselect: continue # Python 2.x # exec(ccmd) flag = eval(evalcmd) if not flag: snaps[i].tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
Methods
def all(self)
-
Expand source code
def all(self): data = self.data for snap in data.snaps: snap.tselect = 1 data.nselect = len(data.snaps) data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
def none(self)
-
Expand source code
def none(self): data = self.data for snap in data.snaps: snap.tselect = 0 data.nselect = 0 print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
def one(self, n)
-
Expand source code
def one(self, n): data = self.data for snap in data.snaps: snap.tselect = 0 i = data.findtime(n) data.snaps[i].tselect = 1 data.nselect = 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
def skip(self, n)
-
Expand source code
def skip(self, n): data = self.data count = n - 1 for snap in data.snaps: if not snap.tselect: continue count += 1 if count == n: count = 0 continue snap.tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))
def test(self, teststr)
-
Expand source code
def test(self, teststr): data = self.data snaps = data.snaps # Python 2.x # cmd = "flag = " + teststr.replace("$t","snaps[i].time") # ccmd = compile(cmd,'','single') # Python 3.x evalcmd = teststr.replace("$t", "snaps[i].time") for i in range(data.nsnaps): if not snaps[i].tselect: continue # Python 2.x # exec(ccmd) flag = eval(evalcmd) if not flag: snaps[i].tselect = 0 data.nselect -= 1 data.aselect.all() print("%d snapshots selected out of %d" % (data.nselect, data.nsnaps))